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At the Previous Class
● The overview of the course

● Two main rendering techniques: rasterization 
and ray tracing

● Their issues with different configurations
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Rasterization: Rendering Pipeline
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Depth Buffer

Algorithm: 
Maintain current closest surface at each pixel

Rendering Loop:
set depth of all pixels to ZMAX

foreach primitive in scene 
foreach pixel in primitive

compute zprim at pixel
if (zprim < depthpixel) then

pixel = object color
depthpixel = zprim

endif
endfor

endfor
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Depth Buffer: Advantage
● Simple
● Can process one primitive at a time in any 

order
● Can easily composite one image/depth 

with another image/depth
● Useful for parallel rendering especially for 

sort-last based method

● Spatial coherence
● Incremental evaluation in loops
● Good memory coherence
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Depth Buffer: Disadvantage
● Transparency is hard to handle

● Has to be done in strict back-to-front order

● Lots of overdraw
●Read/Modify/Write is hard to make fast
●Requires a lot of storage
●Quantization artifacts
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Limitations of Rasterization
● The performance ~ linear to # of triangles
●Massive models with high-depth or low-

depth complexity
● Require output sensitive rendering methods
● Culling techniques for high-depth complexity
● Multi-resolution techniques for low-depth 

complexity
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What are Culling and Clipping?
● Culling

● Throws away entire objects and primitives that 
cannot possibly be visible

● Clipping
● “Clips off” the visible portion of a primitive
● Simplifies rasterization 
● Used to create “cut-away” views of a model
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Visibility Culling Methods
● Back-face culling
● View frustum culling
●Occlusion culling
●Hierarchical culling
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Culling Example

● Power plant 
model
● 13 M triangles
● 1.7 M triangles -

gutted version show 
here with no 
internal pipes
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Culling Example

Full model
1.7 Mtris

View frustum culling
1.4 Mtris

Occulsion culling
89 Ktris
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Back-Face Culling
● Special case of occlusion - convex self-

occlusion
● for closed objects (has well-defined inside and 

outside) some parts of the surface must be 
blocked by other parts of the surface

● Specifically, the backside of the object is 
not visible
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Face Plane Test
● Compute the plane for the face:

● Cull if eye point in the negative half-space 
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● Implicit equation for line (plane):

● If     is normalized then d gives the distance of the 
line (plane) from the origin along 

Lines and Planes
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View Frustum Culling
● Test objects against planes defining view 

frustum

●Uses BVs of objects to improve the 
performance of view-frustum culling
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Depth Complexity
●Number of triangles per each pixel

● Likely to grow as the model complexity 
increases
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Occlusion Culling
●Detects visibility of primitives
● If invisible, do not need to process such 

primitives

●What are ingredients for the success of the 
method?
● Fast visibility checking
● Conservative primitive enclosing with BVs, etc.
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Hardware Accelerated Occlusion 
Query

Excerpted from NVIDIA slides
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Excerpted from NVIDIA slides
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Occlusion Culling with Occlusion 
Queries

●Render objects visible in previous frame 
(occlusion representation)
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Occlusion Culling with Occlusion 
Queries

● Turn off color and depth writes 
● Render object bounding boxes with occlusion 

queries

newly visible
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Occlusion Culling with Occlusion 
Queries

● Re-enable color writes
● Render newly visible objects
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Assumptions & Limitations
● Assume temporal coherence

● How about the initial frame?

● Can we take advantage of spatial 
coherence between objects?
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Hierarchical Culling
● Culling needs to be cheap!
● Bounding volume hierarchies accelerate culling by 

trivially rejecting/accepting entire sub-trees at a 
time not visited

visited

Inside Indeterminate

Indeterminate

Indeterminate OutsideInsideInside

Example of hierarchical view-frustum culling
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Visibility Computations
● Fundamental question:

● Between which parts of a scene does there 
exist an unobstructed path?

● Types of visibility computations
● Hidden surface removal 
● Visibility culling

● Some other related applications
● Line-of-sight
● Sound propagation
● Path planning and robotics
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Classes of Visibility Algorithms
● Point vs. Region visibility

● Compute parts of the scene visible at a point or 
any point in a region

●Object vs. Image precision
● Compute parts of an object (or which pixel) 

that are visible
● Operates directly on or discretized 

representation of the geometry
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Ray Tracing: Visibility Issue

● For each pixel, find closest object along 
the ray and shade pixel accordingly

● Advantages
● Conceptually simple
● Can support CSG
● Can be extended to handle global 

illumination effects (ex: shadows and reflectance)

●Disadvantages
● Renderer must have access to entire retained model
● Hard to map to special-purpose hardware
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Next Time..
● Study culling techniques

● E.g., Multi-resolution methods
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