
Culling Techniques

Sung-Eui Yoon
(윤성의)

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/SGA/

2

At the Previous Class
● The overview of the course

● Two main rendering techniques: rasterization
and ray tracing

● Their issues with different configurations

3

Rasterization: Rendering Pipeline

Vertex
Transforms

Cull, Clip
& Project Process

And
Rasterize
Primitive

Fragment
Processing

Per-
Fragment
Operations

Frame
Buffer

Operations

Frame
Buffer

Texture
Memory

Display

Host
Commands

4

Depth Buffer

Algorithm:
Maintain current closest surface at each pixel

Rendering Loop:
set depth of all pixels to ZMAX

foreach primitive in scene
foreach pixel in primitive

compute zprim at pixel
if (zprim < depthpixel) then

pixel = object color
depthpixel = zprim

endif
endfor

endfor

5

Depth Buffer: Advantage
● Simple
● Can process one primitive at a time in any

order
● Can easily composite one image/depth

with another image/depth
● Useful for parallel rendering especially for

sort-last based method

● Spatial coherence
● Incremental evaluation in loops
● Good memory coherence

6

Depth Buffer: Disadvantage
● Transparency is hard to handle

● Has to be done in strict back-to-front order

● Lots of overdraw
●Read/Modify/Write is hard to make fast
●Requires a lot of storage
●Quantization artifacts

7

Limitations of Rasterization
● The performance ~ linear to # of triangles
●Massive models with high-depth or low-

depth complexity
● Require output sensitive rendering methods
● Culling techniques for high-depth complexity
● Multi-resolution techniques for low-depth

complexity

8

What are Culling and Clipping?
● Culling

● Throws away entire objects and primitives that
cannot possibly be visible

● Clipping
● “Clips off” the visible portion of a primitive
● Simplifies rasterization
● Used to create “cut-away” views of a model

9

Visibility Culling Methods
● Back-face culling
● View frustum culling
●Occlusion culling
●Hierarchical culling

10

Culling Example

● Power plant
model
● 13 M triangles
● 1.7 M triangles -

gutted version show
here with no
internal pipes

11

Culling Example

Full model
1.7 Mtris

View frustum culling
1.4 Mtris

Occulsion culling
89 Ktris

12

Back-Face Culling
● Special case of occlusion - convex self-

occlusion
● for closed objects (has well-defined inside and

outside) some parts of the surface must be
blocked by other parts of the surface

● Specifically, the backside of the object is
not visible

13

Face Plane Test
● Compute the plane for the face:

● Cull if eye point in the negative half-space

1 0 2 0n (v v) (v v)= − × −v
& & & &

0v&

1v&

2v&

0d n v= ⋅v &

14

● Implicit equation for line (plane):

● If is normalized then d gives the distance of the
line (plane) from the origin along

Lines and Planes

n̂

d

(0,0)

x y

x y

n x n y d 0

x

[n n d] y 0 l p 0

1

+ − =

⎡ ⎤
⎢ ⎥− = ⇒ ⋅ =⎢ ⎥
⎢ ⎥⎣ ⎦

&

n
v

n
v

15

View Frustum Culling
● Test objects against planes defining view

frustum

●Uses BVs of objects to improve the
performance of view-frustum culling

16

Depth Complexity
●Number of triangles per each pixel

● Likely to grow as the model complexity
increases

17

Occlusion Culling
●Detects visibility of primitives
● If invisible, do not need to process such

primitives

●What are ingredients for the success of the
method?
● Fast visibility checking
● Conservative primitive enclosing with BVs, etc.

18

Hardware Accelerated Occlusion
Query

Excerpted from NVIDIA slides

19
Excerpted from NVIDIA slides

20

Occlusion Culling with Occlusion
Queries

●Render objects visible in previous frame
(occlusion representation)

21

Occlusion Culling with Occlusion
Queries

● Turn off color and depth writes
● Render object bounding boxes with occlusion

queries

newly visible

22

Occlusion Culling with Occlusion
Queries

● Re-enable color writes
● Render newly visible objects

23

Assumptions & Limitations
● Assume temporal coherence

● How about the initial frame?

● Can we take advantage of spatial
coherence between objects?

24

Hierarchical Culling
● Culling needs to be cheap!
● Bounding volume hierarchies accelerate culling by

trivially rejecting/accepting entire sub-trees at a
time not visited

visited

Inside Indeterminate

Indeterminate

Indeterminate OutsideInsideInside

Example of hierarchical view-frustum culling

25

Visibility Computations
● Fundamental question:

● Between which parts of a scene does there
exist an unobstructed path?

● Types of visibility computations
● Hidden surface removal
● Visibility culling

● Some other related applications
● Line-of-sight
● Sound propagation
● Path planning and robotics

26

Classes of Visibility Algorithms
● Point vs. Region visibility

● Compute parts of the scene visible at a point or
any point in a region

●Object vs. Image precision
● Compute parts of an object (or which pixel)

that are visible
● Operates directly on or discretized

representation of the geometry

27

Ray Tracing: Visibility Issue

● For each pixel, find closest object along
the ray and shade pixel accordingly

● Advantages
● Conceptually simple
● Can support CSG
● Can be extended to handle global

illumination effects (ex: shadows and reflectance)

●Disadvantages
● Renderer must have access to entire retained model
● Hard to map to special-purpose hardware

28

Next Time..
● Study culling techniques

● E.g., Multi-resolution methods

	Slide Number 1
	At the Previous Class
	Rasterization: Rendering Pipeline
	Depth Buffer
	Depth Buffer: Advantage
	Depth Buffer: Disadvantage
	Limitations of Rasterization
	What are Culling and Clipping?
	Visibility Culling Methods
	Culling Example
	Culling Example
	Back-Face Culling
	Face Plane Test
	Lines and Planes
	View Frustum Culling
	Depth Complexity
	Occlusion Culling
	Hardware Accelerated Occlusion Query
	Slide Number 19
	Occlusion Culling with Occlusion Queries
	Occlusion Culling with Occlusion Queries
	Occlusion Culling with Occlusion Queries
	Assumptions & Limitations
	Hierarchical Culling
	Visibility Computations
	Classes of Visibility Algorithms
	Ray Tracing: Visibility Issue
	Next Time..	

