Collision Detection

Sung-Eui Yoon (윤성의)

Course URL: http://jupiter.kaist.ac.kr/~sungeui/SGA/

Course Administration

- Make progresses on your chosen topic
 - Write down toward the mid-term report, whose deadline is Nov-6
- Presentation schedule

Proximity Queries

- Collision detection
 - Checks whether there is collision between objects
 - Reports colliding primitives if any

- Minimum separation distance
 - Compute a minimum distance between two objects and report primitives realizing the distance

Collision Detection

- Main component of:
 - Dynamic simulation for game & movies

Navigation and path planning

Time Complexity

- Naïve method between two objects
 - O(n * m), where n and m are # of triangles of two objects
 - Can be very slow even for small models
- Can we do better?
 - Employ culling techniques

Hierarchical Representations

- Bounding volumes
 - A proxy containing primitives
 - Should be tight and easy to check for collision
 - Provide culling
- Recursively represent models
 - Provide hierarchical culling
 - Object partitioning hierarchies or space partitioning hierarchies

OPH:

SPH:

- Object centric
- Spatial redundancy
- e.g., BVHs

- Space centric
- Object redundancy
- e.g., kd-trees

OPH:

SPH:

- Object centric
- Spatial redundancy
- e.g., BVHs

- Space centric
- Object redundancy
- e.g., kd-trees

OPH:

SPH:

- Object centric
- Spatial redundancy
- e.g., BVHs

- Space centric
- Object redundancy
- e.g., kd-trees

OPH:

- Object centric
- Spatial redundancy
- e.g., BVHs

- SPH:
 - Space centric
 - Object redundancy
 - e.g., kd-trees

Bounding Volume Hierarchies

- Each node has bounding volumes
 - Leaf node has k primitives; typically, k is 1

Trade-off in Choosing BV's

increasing complexity & tightness of fit

decreasing cost of overlap tests + BV update

BVH-Based Collision Detection

Bounding volume test tree (BVTT)

Hierarchy Construction

- Top-down vs. bottom-up approach
- Top-down methods
 - Recursively partition primitives into two subsets
- Bottom-up methods
 - Merges nearby primitives into BV nodes

Continuous Collision Detection

- Discrete checking
 - Can miss collision if time step is large

- Continuous checking
 - Always identify collisions
 - Expensive

