
Cache-Coherent Layouts

Sung-Eui Yoon
(윤성의)

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/SGA/

2

Course Administration
●Make progresses on your chosen topic

● Read papers now, not later!
● Think about pros and cons of each paper
● Think about how we can further improve
● Write down toward the mid-term report, whose

deadline is Nov-6

3

Organization of Report
● Introduction

● State a topic and a problem that you want to
address

● Give motivations
● Present your main idea (and results)

●Related work
● Identify a few major categories related to the

topic
● Emphasize benefits over your method

4

Organization of Report
●Overview

● State the problem in detail
● Present your idea
● Why your idea address the problem

Your mid-term report should have introduction,
related work, and overview sections

5

Organization of Report
●Main body of the papers

● Describe your idea/solutions in detail
● Implementation & results

● Describe your implementation and results
● If you didn’t implement, please provide a rough

implementation sketch and the expected
results

● Conclusion
● Summary your topic, problem, and your idea
● Emphasize results/benefits of your idea
● Lay out future work

6

At the Previous Classes
● Studied visibility culling and LOD

techniques for rasterization and ray tracing
● Reduced the model complexity

7

In this Class
●Will study cache-coherent layouts of

meshes, graphs, hierarchies
● Re-organize the data for efficient geometric

processing and rendering

8

Motivation

1

10

100

1000

Disk
access
speed

RAM
access
speed

CPU
speed

GPU
speed

Accumulated
growth rate

during 1993 – 2004
(log scale)

Courtesy: Anselmo Lastra,
http://www.hcibook.com/e3/online/moores-law/

● Lower growth rate of data access speed

1.5X

20X
46X

130X

during 99 - 04

9

Memory Hierarchies and Block-
Based Caches

CPU

Fast memory
or cache

Slow memory

Block
transfer

Disk

10-2 secAccess time: 10-7 sec10-8 sec

10

Cache-Coherent Layouts
● Stores related data closely in the 1D layout

● Cache-Aware
● Optimized for particular cache parameters

(e.g., block size)

● Cache-Oblivious
● Minimizes data access time without any

knowledge of cache parameters
● Directly applicable to various hardware and

memory hierarchies

11

82 million triangles
Irregular distribution of geometry

CAD Model –
Double Eagle Tanker Model

12

Isosurface and Scanned Models

Isosurface
100M triangles

St. Matthew
372M triangles

13

Main Approaches
● Propose novel and practical cache-coherent

metrics [Yoon et al. SIG 05, Yoon et al. VIS
06, Yoon et al. Euro 06]
● Derive metrics given block-based caches
● Propose efficient cache-coherent layout

constructions
● Apply to different applications

14

Cache-Coherent Metrics
●Measure the expected number of cache

misses of a layout given block-based
caches
● Should correlate well with the observed

number of cache misses

● Cache-aware metrics
● Measure cache-coherence given known cache

parameters (e.g., block size)
● Cache-oblivious metrics

● Consider all possible cache parameters

15

Run-time Captured Video – View-Dependent
Rendering of St. Matthew Model

16

Related Work
● Computation reordering
●Data layout optimization

17

Computational Reordering
● Cache-aware [Coleman and McKinley 95,

Vitter 01, Sen et al. 02]
● Cache-oblivious [Frigo et al. 99, Arge et al.

04]
● Streaming computations [Isenburg et al.

05, 06]

Focus on specific problems such as
sorting and linear algebra computations

18

Data Layout Optimization
●Rendering sequences (e.g., triangle strips)

● [Deering 95, Hoppe 99, Bogomjakov and
Gotsman 02]

● Processing sequences
● [Isenburg and Gumhold 03, Isenburg and

Lindstrom 05]

Assume that access pattern
globally follows the layout order!

19

Data Layout Optimization
●Graph and matrix layout

● A survey [Diaz et al. 02]
● Minimum linear arrangement (MLA)
● Bandwidth, etc.

Does not necessarily produce
good layouts for block-based caches

20

Data Layout Optimization
● Space-filling curves

● [Sagan 94, Pascucci and Frank 01, Lindstrom
and Pascucci 01, Gopi and Eppstein 04]

Assume geometric regularity!

21

Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results

22

Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results

23

nc

General Framework of Layout
Computation

na

nb nd
Input directed
graph, G (N, A)

Layout algorithm, φ

1D layout, φ(N)

……..na nd nc nb

Cache-coherent
metric

24

nc

Two-Level I/O Model [Aggarwal
and Vitter 88]

na

nb nd
Input directed

graph

Cache

M cache blocks,
whose size is B

1D layout with
block size = 3

……..na nd nc nb

na nd nc nb
Layout algorithm, φ

25

Graph Representation
●Directed graph, G = (N, A)

● Represent access patterns between nodes

●Nodes, N
● Data element
● (e.g., mesh vertex or mesh triangle)

●Directed arcs, A
● Connects two nodes if they are accessed

sequentially

nc

na

nb nd

26

Weights of Nodes and Arcs
● Indicate probabilities that each element

will be accessed

● Computed in an equilibrium status during
infinite random walks
● Assume that applications infinitely access the

data according to the input graph
● Correspond to eigen-values of the probability

transition matrix

27

Problem Statement

● Vertex layout of G = (N, A)
● One-to-one mapping of vertices to indices

in the 1D layout

● Compute a that minimizes the
expected number of cache misses

ϕ

|}|, ... ,1{ N→N:ϕ

nc

na

nb nd

nc

na

nb nd

28

Cache-Coherence of a Layout
given Block-Based Caches
● Expected number of cache misses of a

layout
● Probability accessing a node from another

node by traversing an arc
● Conditional probability that we will have a

cache miss given the above access pattern

nc

na

nb nd

29

Specialization to Meshes
● Expected number of cache misses of a

layout
● Probability accessing a node from another

node by traversing an arc
● Conditional probability that we will have a

cache miss given the above access pattern

nc

na

nb nd

nc

na

nb nd

An input mesh Implicitly
derived graph

= constant

1. Two opposite directed
arcs

2. Uniform distribution to
access adjacent nodes
given a node

30

Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results

31

Four Different Cases

Cache-aware case
single cache block,

M=1

Cache-oblivious case
single cache block,

M=1

Cache-aware case
multiple cache blocks,

M>1

Cache-oblivious case
multiple cache blocks,

M>1

32

Cache-Aware: Single Cache
Block, M=1

nc

na

nb nd
Input directed

graph

1D layout with
block size = 3

……..na nd nc nb

Cache, whose
block size is B

Straddling arcs

33

Cache-Aware: Multiple Cache
Blocks, M>1

nc

na

nb nd
Input directed

graph

1D layout with
block boundary

……..na nd nc nb

Straddling arcs
Cache

34

Final Cache-Aware Metric
● Counts the number of straddling arcs of

the layout given a block size B

∑
∈

−
Aji

BB jiS
A),(

|))()((|
||

1 ϕϕ

)(iBϕ : block index containing the node, i

)(xS : Unit step function, 1 if x > 0
0 otherwise.

where

35

High Accuracy of Cache-Aware
Metric

Linear
correlation

[-1, 1]

Observed number of cache misses

With 5 cache
blocks

With 25 cache
blocks

Cache-aware
metric 0.97 0.97

Tested layouts:
Z-curve, Hilbert curve, H-order,
minimum linear arrangement layout,
βΩ-layout, geometric CO layout,
(bi or uni) row-by-row,
(bi or uni) diagnoal layouts

Z-curve on a uniform grid

Tested block size = 4KB

36

Cache-Aware Layouts

●Optimized with cache-aware metric given a
block size B
● Computed from the graph partitioning

nc

na

nb nd

Input directed
graph

1D layout with
block size = 3

……..na nd nc nb

Straddling arcs

37

Four Different Cases

Cache-aware case
single cache block,

M=1

Cache-oblivious case
single cache block,

M=1

Cache-aware case
multiple cache blocks,

M>1

Cache-oblivious case
multiple cache blocks,

M>1

38

Cache-Oblivious: Single Cache
Block, M=1

Cache

Does not assume a particular block size:
Then, what are good representatives

for block sizes?

39

Two Possible Block Size
Progressions
● Arithmetic progression

● 1, 2, 3, 4, …

●Geometric progression
● 20 , 21 , 22 , 23 , …
● Well reflects current caching architectures
● E.g., L1: 32B, L2: 64B, Page: 4KB, etc.

40

Probability that an Arc is a
Straddling Arc

……..na nd nc nb

Is an arc straddling
given a block size?

Computed as a probability
as a function of arc length, l

Arc length, l, = 2

41

Two Cache-Oblivious Metrics
● Arithmetic cache-oblivious metric,

● Geometric cache-oblivious metric,

∑
∈Aji

ijA l
),(

||
1

∑
∈Aji

ijA l
),(

||
1)log(⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

∈

 log
||

1

),(

A

Aji
ijl

Arc length of arc (i, j)

Geometric mean
of arc lengths

)(ϕaCOM

)(ϕgCOM

MLA metric,
Arithmetic mean

42

Validation for Cache-Oblivious
(CO) Metrics

●Geometric cache-oblivious metric
● Practical and useful

Geometric
CO layout

Arithmetic
CO layout

97% of tested
block sizes

The number of
cache misses

when M = 1
(log scale)

73% of tested
power-of-two block sizes

43

Correlations between Metrics and
Observed Number of Cache Misses

Linear correlation
[-1, 1]

Observed number of cache misses

With 1 cache
block

With 5 cache
blocks

Geometric CO metric 0.98 0.81

Arithmetic CO metric -0.19 -0.32

Tested block size = 4KB

Tested with 10 different layouts on a uniform grid

44

Cache-Oblivious Layouts

●Geometric cache-oblivious metric
● Very efficient
● Can be used in different layout optimization

methods

45

Layout Computation with Geometric
Cache-Oblivious Metric

●Multi-level construction method
● Partition an input mesh into k different sets
● Layout partitions based on our metric

…

1. Partition 2. Lay out

•Generalized layout method
for unstructured meshes

46

Evaluating Existing Layouts

●No known tight bound
● Compare against the

best layout we can
construct
● Employ an efficient

sampling method

Is it close
to

the optimal
layout?

An existing layout, φ

Use it

Build a new one

47

Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results

48

Layout Computation Time
● Process 70 million vertices per hour

● Takes 2.6 hours to lay out St. Matthew model
(372 million triangles)

● 2.4GHz of Pentium 4 PC with 1 GB main
memory

49

Our Layout of Bunny ModelComputed layout

50

Applications
● Isosurface extraction
● View-dependent rendering
● Collision detection
●Ray tracing

51

Iso-Surface Extraction

●Uses contour tree [van Kreveld et al. 97]
● Runtime is dominated by the traversal of iso-

surface
● Layout graph

● Use an input tetrahedral mesh

Spx model
(140K vertices)

52

High Correlation with Number of
Cache Misses

Linear
correlation

[-1, 1]

Observed number
of cache misses

With 1 cache
block

With 10K cache
blocks

Geometric CO
metric 0.99 0.98

Tested block size = 4KB

Tested with 8 different layouts:
our geometric CO, our cache-aware, breadth-first (and

depth-first) layouts, spectral [Juvan and Mohar 92],
cache-oblivious mesh [Yoon et al. 05], Z-curve [Sagan

94], X-axis sorted layouts

53

High Correlation with Runtime
Performance

Linear
correlation

[-1, 1]

First iso-surface
extraction time

Second iso-surface
extraction time

Geometric CO
metric 0.94 0.94

Disk I/O time is
major bottleneck

Memory access time
is major bottleneck

54

Comparison with Other Layouts

0 0.5 1 1.5 2 2.5

Cache-aware layout

Geometric CO layout

Z-curve

COML

Depth-first layout

Spectral layout

Breadth-first layout

X-axis layout

The first iso-surface extraction time
(sec)

8% - 77%
improvement and

very close to
the cache-aware

performance

55

Isocontour Extraction – Puget
Sound Model, 134M Triangles

Isocontour
z(x,y) = 500m

56

Comparison – First
Extraction of Z(x,y) = 500m

0

5

10

15

20

25

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

Relative
Performance

over
Z-axis sorted

layout

Nearly optimized for particular isocontour

2

21

13

1

Disk access time is bottleneck

57

Comparison – Second Extraction of
Z(x,y) = 500m

Relative
Performance

over
Z-axis sorted

layout
2

21

13

0
50

100
150
200
250
300
350
400

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

379

212

10.8

Memory and L1/L2 cache access times are bottleneck

58

View-Dependent Rendering
● Layout vertices and triangles of CHPM

[Yoon et al. VIS 04]
● Reduce misses of GPU vertex cache

59

View-Dependent Rendering

Models # of
Tri. Our layout Simplification layout

St. Matthew 372M 106 M/s 23 M/s

Isosurface 100M 90 M/s 20 M/s

Double Eagle
Tanker 82M 47 M/s 22 M/s

4.5X

2.1X

Peak performance: 145 M tri / s on
GeForce 6800 Ultra

60

Comparison with Other Rendering
Sequences

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Cache
miss ratio
(misses

per
triangle)

Our layout

Universal rendering sequences
[Bogomjakov and Gotsman 2002]

61

Comparison with Other Rendering
Sequences

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Cache
miss ratio
(misses

per
triangle)

Our layout

[Hoppe 99]
Optimized for 16 vertex cache size

with FIFO replacement

Optimized for no particular cache size

62

Performance during View-Dependent
Rendering

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

100% 75% 50% 25% 10%
Resolution

 Cache miss
ratio

(given cache
size 32) Our layout

[Hoppe 99]

Optimized for various resolutions

Optimized for full resolution

63

Cache Miss Ratio on Bunny
Model

GPU vertex
cache miss

ratio

Vertex cache size

Hoppe [Hoppe 99]Theoretical
lower bound

[Bar-Yehuda and
Gotsman 96]

Universal rendering seq.
[Bogomjakov and Gotsman 02]

Geometric
CO layout

64

Cache Miss Ratio on Power Plant
Model

GPU vertex
cache miss

ratio

Vertex cache size

Z-curve

Hoppe’s rendering
seq. [Hoppe 99]

Theoretical
lower bound

[Bar-Yehuda and
Gotsman 96]

COML
[Yoon et al. 05]

Geometric
CO layout

65

Collision Detection
●Use oriented bounding box (OBB)

[Gottschalk et al. 96]
● Breadth-first tree traversal

●Use an input graph representing well the
runtime access pattern on the hierarchy

66

Collision Detection – Robot and
Power Plant Models

20k triangles 1M triangles

67

Collision Detection –
Performance Comparison I

0

200

400

600

800

1000

1200

COLBVH VEB BFL COML DFLOur
cache-

oblivious
layout

van
Emde
Boas
layout

Breadth-
first

layout

Cache-
oblivious

mesh layout

Depth-
first

layout

Different layouts

Working set size
(KB)

Collision time (ms/100)

41% ~ 500% performance improvement

68

0

500

1000

1500

2000

2500

COLBVH VEB BFL COML DFL

Collision Detection –
Performance Comparison II

Our
layout

van
Emde
Boas
layout

Breadth-
first

layout

Cache-
oblivious

mesh
layout

Depth-
first

layout

Different layouts

35% ~ 2600% performance improvement

Collision time (ms/100)

Working set size
(KB)

69

Cache-Oblivious Layout vs
Cache-Aware Layout
● Cache-aware layouts

● Take advantage of block size information
(4KB)

●Minor performance degradation
● 8% compared to cache-aware layouts

70

Ray Tracing
●Use kd-tree [Wald 04]

● Depth-first tree traversal

71

Ray Tracing – Lucy Model
28 million triangles Pentium IV with 1GB

72

0
200
400
600
800

1000
1200

COLBVH VEB BFL DFL

Ray Tracing – Performance
Comparison

Our
layout

van Emde
Boas layout

Breadth-first
layout

Depth-first
layout

Different layouts

77% ~ 180% performance improvement

Working set size (MB)

Render time (sec)

73

Advantages

●General
● Applicable to all kinds of polygonal

models
● Works well for various applications

● Cache-oblivious
● Can have benefit from CPU/GPU cache to

memory and disk

●Robust performance improvement
●No modification of runtime application

● Only layout computation

74

OpenCCL: Cache-Coherent Layouts
of Graphs and Meshes

● Source codes for computing a cache-
coherent layout
● Easy to use
● Google “Cache Coherent Layouts”

CLayoutGraph Graph (NumVertex);
0

1 2

Graph.AddEdge (0, 1);
Graph.AddEdge (0, 2);
Graph.AddEdge (1, 2);

int Order [NumVertex];
Graph.ComputeOrdering (Order);

75

Summary
●Novel cache-aware and cache-oblivious

metrics to evaluate layouts
● Derived metrics based on two-level I/O model
● Improved the performance of applications

without modifying codes

76

Ongoing and Future Work
●Derive a lower bound on our geometric

cache-oblivious metric
● Employ mesh compression to further

reduce disk I/O accesses
● Investigate efficient layout method for

deforming/dynamic models
● Apply to non-graphics applications

● e.g., shortest path or other graph computations
● Apply to other representations such as R-

tree

77

At the Next Class
●Will discuss data compression

	Slide Number 1
	Course Administration
	Organization of Report
	Organization of Report
	Organization of Report
	At the Previous Classes
	In this Class
	Motivation
	Memory Hierarchies and Block-Based Caches
	Cache-Coherent Layouts
	CAD Model – �Double Eagle Tanker Model
	Isosurface and Scanned Models
	Main Approaches
	Cache-Coherent Metrics
	Run-time Captured Video – View-Dependent Rendering of St. Matthew Model
	Related Work
	Computational Reordering
	Data Layout Optimization
	Data Layout Optimization
	Data Layout Optimization
	Outline
	Outline
	�General Framework of Layout Computation
	Two-Level I/O Model [Aggarwal and Vitter 88]
	Graph Representation
	Weights of Nodes and Arcs
	Problem Statement
	Cache-Coherence of a Layout given Block-Based Caches
	Specialization to Meshes
	Outline
	Four Different Cases
	Cache-Aware: Single Cache Block, M=1
	Cache-Aware: Multiple Cache Blocks, M>1
	Final Cache-Aware Metric
	High Accuracy of Cache-Aware Metric
	Cache-Aware Layouts
	Four Different Cases
	Cache-Oblivious: Single Cache Block, M=1
	Two Possible Block Size Progressions
	Probability that an Arc is a Straddling Arc
	Two Cache-Oblivious Metrics
	Validation for Cache-Oblivious (CO) Metrics
	Correlations between Metrics and Observed Number of Cache Misses
	Cache-Oblivious Layouts
	Layout Computation with Geometric Cache-Oblivious Metric
	Evaluating Existing Layouts
	Outline
	Layout Computation Time
	Our Layout of Bunny Model
	Applications
	Iso-Surface Extraction
	High Correlation with Number of Cache Misses
	High Correlation with Runtime Performance
	Comparison with Other Layouts
	Isocontour Extraction – Puget Sound Model, 134M Triangles
	Comparison – First�Extraction of Z(x,y) = 500m
	Comparison – Second Extraction of Z(x,y) = 500m
	View-Dependent Rendering
	View-Dependent Rendering
	Comparison with Other Rendering Sequences
	Comparison with Other Rendering Sequences
	Performance during View-Dependent Rendering
	Cache Miss Ratio on Bunny Model
	Cache Miss Ratio on Power Plant Model
	Collision Detection
	Collision Detection – Robot and Power Plant Models
	Collision Detection – Performance Comparison I
	Collision Detection – Performance Comparison II
	Cache-Oblivious Layout vs Cache-Aware Layout
	Ray Tracing
	Ray Tracing – Lucy Model
	Ray Tracing – Performance Comparison
	Advantages
	OpenCCL: Cache-Coherent Layouts of Graphs and Meshes
	Summary
	Ongoing and Future Work
	At the Next Class

