
Subdivision Meshes in GPU

Young-Jun Kim
KAIST (Korea Advanced Institute of Science

and Technology)

2

● Introduction
● Background

● Subdivision meshes
● GPU

●Related Works
● Problem and Idea
● Conclusion

Contents

3

● The subdivision meshes are developed for
representing the characters and objects
having smooth shape for the animations
and games

● Subdivision meshes in the movies
● Geri’s Game (Pixar 1997)
● A Bug’s Life (Pixar 1998)
● Meet The Robinsons (Disney 2007)

Introduction

© PIXAR © PIXAR & Disney © Disney

4

●Recursively refine a polygonal mesh

●Number of iteration determines Level-Of-
Detail (LOD)

● Provide infinite LOD

Subdivision Meshes (1)

Original control mesh
Smoother surface

by recursive processing

5

Subdivision Meshes (2)
● Two phase process

● Refinement phase: creates new vertices and
reconnects to create new triangles

● Smoothing phase: computes new positions for
the vertices

6

● Efficiency
● Modeling is easy

● Arbitrary topology
● Classic spline approaches have great difficulty with

control meshes of arbitrary topology.

Advantage of Subdivision (1)

Standard valence : 4
(regular point)
Extraordinary valence : ≠4
(irregular point)

7

Piecewise smooth subdivision [Hoppe ’94]
Support more detail surfaces

● Complex geometry
● Internal refinement of a mesh reduces

consumption of bandwidth (bus, memory, and
etc.)

Advantage of Subdivision (2)

Corner Crease

Dart

Smooth

smooth (s=0), dart (s=1), crease (s=2), and corner (s>2)

8

Face Split Vertex Split

Triangular meshes Quad. meshes Doo-Sabin (C1)

Approximating Loop (C2) Catmull-Clark (C2) Midedge (C1)

Interpolating Modified Butterfly
(C1) Kobbelt (C1) Biquartic(C4)

Subdivision Scheme Classification

Face Split Vertex Split

9

● Approximating
● The limit curve does not lie on the vertices of the initial

polygon because the vertices are discarded (or updated).

● Interpolating
● Keep all the points from the previous subdivision step

Subdivision Schemes

10

● Good results for most kinds of control mesh

[Bolz ‘02]

● Most of modeling tools use Catmull-Clark
subdivision
● Autodesk 3ds Max
● Autodesk Maya
● PIXAR RenderMan

Catmull-Clark Subdivision (1)

11

● Subdivision rules (regular point)

Catmull-Clark Subdivision (2)

4
4321 vvvvf +++

=

4
2121 ffvve +++

=

4
..2. ' favgeavgvprevv +×+

=

face

edge

vertex

12

●No generation of unnecessary vertices
● Improve performance with almost same

quality

Adaptive Subdivision

Adaptive subdivision (Max.
level = 4)

Uniform subdivision
(Level = 4)

13

LOD Selection
● Curvature

● Flatness test
● LOD is calculated from Max(D1, D2)

● Projected length (edge) or area (face)

D1 D2 D1

D2

screen

L A

14

Crack
● Adaptive subdivision has possibility to

create cracks
● Cracks are created if each patch has

different LOD

crack

T vertex
T vertex

15

Crack Elimination
●Remove vertex

●Generate a face point & edge points

16

Why GPU?
●GPU has programmability enough for

general computation
● A programmable shader replaces a traditional

fixed function unit as core processor
●GPU is faster than CPU for parallel

processing of independent workloads
● Integrated more arithmetic units (an arithmetic

unit is simpler than that of CPU)
● Enhanced matrix calculation (support dot

product and multiply-and-add instructions)
● Control path is optimized for non-data hazard

workloads (efficient and simple)

17

Programmable Shader of GPU

● Traditional fixed-function unit
Programmable shader

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
Assembly

Frame
BufferCPU Rasterization Raster

Operations

Transform
& Lighting

GPU
Front end

Primitive
Assembly

Frame
BufferCPU Rasterization Raster

Operations

Texture
Unit

18

Parallel Processing
●Handle independent workloads

Pixel
Shader 1

Vertex
Shader 1

GPU
Front end

Primitive
Assembly

Frame
BufferCPU Rasterization Raster

Operations

Vertex
Shader 2

Vertex
Shader N

Pixel
Shader 2

Pixel
Shader N

19

GPU Limitations
● Program length limitation

● Maximum code length is limited.
● Shader program switching overhead is very

heavy.
● But this problem can be solved at the next

version of shader model.
●Weak data feedback

● Optimized for unidirectional data flow (input-
to-framebuffer)

● Some extensions support data feed back
features but limited.

20

● Bolz, J. and Schröder, P. 2002. Rapid
Evaluation of Catmull-Clark Subdivision
Surfaces
● CPU implementation using SIMD instruction
● Pre-computation of tables for all depth and

valences
●Poor flexibility and large tables

● Adaptive subdivision
● Final subdivided vertices send to GPU

●No gain of CPU-to-GPU data transfer
bandwidth

Previous Works (1)

21

Previous Works (2)
● Bolz, J. and Schröder, P. 2002. Evaluation

of subdivision surfaces on programmable
graphics hardware
● GPU implementation version of their previous

work
● Final subdivided vertices send to CPU and re-

send to GPU for rendering
●The data shoud be sent to vertex shader
input for rendering, but there was no path
from frame buffer or texture memory to vertex
shader in that time

22

● Bunnel. 2005. Adaptive Tessellation of Subdivision
Surfaces with Displacement Mapping (GPU Gem2)
● Pixel shader program on GPU for subdivision
● Adaptive subdivision using flatness test at each level
● CPU read the flatness test results from the video memory

and decides which patches need further tessellation for
adaptive subdivision

Previous Works (3)

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
Assembly

Frame
BufferCPU Rasterization Raster

Operations

23

● All patches are subdivided by only one level at every
subdivision iteration
●Good locality between a patch and its neighbors
●Poor locality between a current patch and the same
patch of the next iteration

● Use copy-to-texture for feedback of the intermediate
data

Previous Works (3) – cont’d

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
Assembly

Frame
BufferCPU Rasterization Raster

Operations

Texture
Memory

24

Previous Works (4)
● Le-Jeng Shiue 2005. A Real-time GPU

subdivision Kernel
● Regular processing using fragment mesh

●Irregular point is placed at center
●1-ring regular point meshes are overlapped

25

Previous Works (4) – cont’d
● Processing of irregular points causes inefficient

memory access and shader context switching
(regular point shader program and irregular
point shader program)

● All fragment meshes have regular pattern
●1-irregular point & regular points
●Can be used of united shader program

● Few information about adaptive subdivision

26

Previous Works (5)
●Minho Kim. 2005. Real-time Loop

Subdivision on the GPU
● Exploration for many new memory access

features in OpenGL API extension
●Using frame buffer object (FBO)

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
AssemblyCPU Rasterization Raster

Operations

FBO

27

Previous Works (5) – cont’d
●Using vertex buffer object (VBO)

●or vertex texture

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
AssemblyCPU Rasterization Raster

Operations

Texture
MemoryVBO/PBO

Pixel
Shader

Vertex
Shader

GPU
Front end

Primitive
AssemblyCPU Rasterization Raster

Operations

Texture
Memory

28

Problems
● Context switching is large overhead

● FBO destination switching (frame buffer or
texture memory)

● Multiple shader program switching
● CPU (host) should handle both context

switching
●Neighbor mesh information is overlapped

● Redundant information

29

Problems – cont’d
●Missing temporal locality at each

subdivision step
● Flatness test at every subdivision steps

●Crack should be eliminated at final
subdivision step

● Breath first operation (Subdivision step 1 of
patch 1 subdivision step 1 of patch 2 …
subdivision step n of patch 1)

step 1

can be reused at next step

step 2

but flushed in the cache

30

Question?

Thank You!

	Slide Number 1
	Contents
	Introduction
	Subdivision Meshes (1)
	Subdivision Meshes (2)
	Advantage of Subdivision (1)
	Advantage of Subdivision (2)
	Subdivision Scheme Classification
	Subdivision Schemes
	Catmull-Clark Subdivision (1)
	Catmull-Clark Subdivision (2)
	Adaptive Subdivision
	LOD Selection
	Crack
	Crack Elimination
	Why GPU?
	Programmable Shader of GPU
	Parallel Processing
	GPU Limitations
	Previous Works (1)
	Previous Works (2)
	Previous Works (3)
	Previous Works (3) – cont’d
	Previous Works (4)
	Previous Works (4) – cont’d
	Previous Works (5)
	Previous Works (5) – cont’d
	Problems
	Problems – cont’d
	Question?

