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Introduction

e Physically-based character animation

e Support physical interaction between a
character and its environment

e Generate a variety of physically correct motions

[SIMBICON: Simple Biped Locomotion Control, KangKang Yin et al., SIGGRAPH 2007]

[Realistic Modeling of Bird Flight Animations, Jia-chi Wu, Zoran Popovi¢, SIGGRAPH 2003]
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Introduction

e Physically-based character
e Usually modeled as an articulated body

forearm twist

elbow bend

\ . wrist bend
ﬁ; shoulder
‘1‘? }? (quaternion joint) R
tail twist 4 \\
| | X 1 : :
‘...;.‘L_-gl‘ “'A tail bend l
| ] tail spread spread
e angle of attack  foather
[KangKang Y., '07] [Jia-chi W., "03]

Articulated body = Rigid bodies + Joints
KAIST



Introduction

e Simulation of the articulated-body
dynamics
o (force - accel.)

The calculation of the acceleration response to
a given applied force

o (accel. - force)

The calculation of the force that must be
applied in order to produce a given
acceleration response

f=5 Forward Dynamics f :The applied force
= ' a : The acceleration
= a=2 response
Inverse Dynamics
before y after
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Introduction

e Optimal forward dynamics algorithms

e Their time complexities are linear in the
number of joints, but...

Production constraints

“Dynamics computations
should take less than 10-20
seconds per frame to make

animators’ lives easy”

Sunil Hadap,
PDI/DreamWorks

We do need approximation
techniques for large-scale
dynamics simulations!

" KAIST

[Continuum Crowds, Adrien T. at el., SIGGRAPH 2006]




Related Work

e Optimal Forward Dynamics

e Divide and Conquer Algorithm(DCA) For
Forward Dynamics

e Approximation of Dynamics

e Simulation Levels of Detail(SLODs) for Real-
time Animation

e View-Dependent Culling Systems in Virtual
Environments

e Adaptive Forward Dynamics(AFD)
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SLODs for Real-time Animation

e Simulation of simple hopping robots
e Move around a rectangular court
e Avoid collision with other objects

e Three SLODs models

eFully simulated
eKinematic(leg) + Dynamic(position)

eOnly the position of the body simulated
eNo motion of the leg (invisible case)
Recording of motions needed, Lower scalability to any other models

KAIST



View-Dependent Culling Systems

e Simulation of d\{(namic objects in a virtual
amusement par
e Culling dynamics

e Do not solve dynamic

equations of objects
that are not visible

e Two main problems
o Consistency [pages.cs.wisc.edu/~schenney/research/culling]

In what state should culled objects be when
the view turns back?
e Completeness

Where and when will culled objects return to
the view by themselves? KAIST




View-Dependent Culling Systems

e Consistency

>

View window

e Completeness

"3
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View-Dependent Culling Systems

e Key observation
e The user has a snapshot of the approximate

e Approaches to consistency problem

e Predict from the initial conditions the states of
the systems to which the view turns back

= Apply a different according
to behavioral properties of each dynamic
system

Study of the behavioral properties needed,
Completeness problem not yet solved,
Lower scalability to any other models

KAIST
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DCA For Forward Dynamics

e One of the

e The used

e Spatial vectors: 6D vectors that represent the
linear and angular motions together

e Simple and efficient to express the dynamic
equations

e Computations are recursively defined

o Efficient parallel computing in multi-processor
systems possible
KAIST



DCA For Forward Dynamics

¢ Rigid body system model

e Binary assembly tree
eCombines two subassembly trees recursively

8

oLl

7 Modeling

®

|
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Rigid body system

Assembly Tree

Assembly with
fixed-base

(8)

Four-body
assembly

(7)

Two-body
assembly
(5,6)

One-body
assembly
(1,2,3,4)

KAIST



DCA For Forward Dynamics

e Handles

e Specified locations within a rigid body system
at which external forces may be applied

Connection can be made between H, A, B: Articulated bodies
A only two different handles
Hy, ytwodi C: Combined articulated
body
C’s principal joint
ML HE HE M & —— o HEHIHE
: Handles of A I H, HS l——r ) : Handles of B
H HY L H HS HY
H,’ : Handles of C
A C B

KAIST
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DCA For Forward Dynamics

e Articulated-body equation

r

Body

accelerations

Inverse

inertia tensors

Applied

external forces

Bias

accelerations

[ T S v T
(1)21 (I)Q (I)Qm :: f2
. . . 1/
: : : :I :
(I)ml (I)'m2 (I)’m :: f’m
Tt Ot 1

a

- the acceleration for handle |

: the inverse inertia tensor for handle i

et

to handle j to an acceleration at handle i

: the force applied to handle i

: the bias acceleration for handle i

: the inverse inertia tensor mapping a force applied

KAIST



DCA For Forward Dynamics

e Articulated-body equation

e Body A with m+1 handles
(Hy HY e HY U HYY)

16

I I
: a, : :q)l’? @, q)lélm::q)ﬁz' f, bﬁ:
1 A A A ] A Al A
:ai/i 1 :q)lzll oy q)121m|=(D122= f]-z: b]-z: a'lA (Df (Dlg f1A + blA
. : T : : :> =
| c . A:|'A: :+: a) | |@y @) | £/ | b}
A A
Vol ) [RL Qoo O 1enti i) 1b)
-aA Dr  oF ... D ) A FA A
2 CJ._ZE.___Z%._____Z.%.! 2 L2 2 |
A
D5
Accelerations Inverse Applied Bias
of body A inertias forces accelerations




DCA For Forward Dynamics

e Articulated-body equation
e Body A with m+1 handles

{al}:{CD @}{be} (HAHE o HA HD)
aZ (I)Zl (DZ f2 b2 o e

e Body B with n+1 handles

B B B B B B B B B
a1B _ (D; q)lé le + blB (Hl . H21 : H22 ..... H2n)
a, b, o, fz bz HZ

B
H,
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DCA For Forward Dynamics

e Articulated-body equation
e Body A with m+1 handles

ol |_[@f o[ f2] [br]  (H H . HE L HY)

a, | @5 @ | ] |b) o e
e Body B with n+1 handles

[af}{cpf QEZ}FHQB} (HE HP HS . HY)

aj | @5 @ | 7] |b

e Body C with m+n handles

a]_[of g 147 [b
a0 @ |12 ] b
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DCA For Forward Dynamics

e Articulated-body equation
e Body A with m+1 handles

FQH@;: @ﬂ{ff}{bﬂ (H2 HEA L HA HEY
a2 c1)21 (DZ f2 bZ 0 e

e Body B with n+1 handles

al |_[@f o[ f°] 67| (HP HJ H,..,H})
a?| [@f of | 12] [bf

e Body C with m+n handles
{aic}:{cpf (sz}{fl‘\]{blc} (HAHA . HE JHE JHD L HD)

H,,

a, | |[Pn @] b
The coefficients of C can be expressed
in terms of those of A and B
= Divide and Conquer Algorithm

(DCA) is possible!!
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DCA For Forward Dynamics

e TWO main passes
o alc . (ch (chz f1A _blc-
LSH@& @2}{@Hb§} L

C_mA _MHA A .
Inverse D =D~ D WD, V = (CDQ + CDE) ' e e
nertias | @7 =7 — D WOy, W =V -V5(5'VS) sV

(Dgl = CI)ZBl\N(DZAl

ﬂ:bzA_blA"‘éq.o

OF = (0" , where o
12 =\ y=Wpg+VS(S'VS)"Q
: blC = blA — CI)1A27/ S :Joint motion space
B'as. Q : Forces applied by joint actuators
accelerations b2C = bZA + CDZAl]/ g, - Velocity of the principal joint

e Back-substitution pass (/)

20 KAIST



DCA For Forward Dynamics

e TWO main passes
e Main pass (1) {af}{@f @&}{fﬁHbf}

c c c B c
a, O @, | f, b,
O; =0 — O WD,
C A A
Inverse cI)(Z: = CDZB — (1)2'31W(I)1B2 bias b =b - Dy
inertias accelerations |.C _ LA A
DS = PEWDA b, =0, + @5y

Dy, = (D3,)"
e Back-substitution pass ()
Joint

acceleration 0o = (STVS)_l (Q o STV ((DZAI flA - (sz sz + ,B)) aiA CDlA q)lAz flA blA

[l
+

Kinematic le =Wo 2Al flA —WCDF2 fZB +y o .
constraint B B B B B
a1 q)l q)lZ f1 bl

forces sz - — le _ +
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Adaptive Forward Dynamics

Time
1 s - /) .J‘ I:'.II \_- L__“x l -
) J LW
S— S — Jl j’. KR = —_—
b i = :
R o i J‘ 1".. \ — ~ —
' J N
— e -~ fl | L\m _— -
d p
— 1 J } 1 L L L
- ! xx
e /
Y Simplification [Stephane R. et al., "05] a: 300 joints (5.00 ms)

b: 100 joints (1.70 ms)
We don’t need to simulate all of the joints of an c: 50 joints (0.70 ms)

articulated body to keep its plausible dynamics!!  d: 20 joints (0.25 ms)
e: 1 joints (0.02 ms)

22 KAIST



Adaptive Forward Dynamics

e Hybrid bodies
e Hybrid node: its principal joint is active
(simulated) but some descendents are rigid

e Rigid node: its principal joint is inactive and all
the descendents are rigid / it is a leaf

Active
., region

O Hybrid node
O Rigid node

0"
.

Rigid
region

23 KAIST



Adaptive Forward Dynamics

e Hybrid-body dynamics

alc — (Df (sz 1:1A _|__blc-
3 | @5 @ | T, ] [y

force
| =
Rigidify the principal joint of C
Inverse C _ mB B B
inertias | 02 = P2 — P, Wy, ON :q)i‘j? = P°
DS = DEWDL DC = D (P + D°) A
C C\T
Oy, = (q)21
C_ LA A C _hC _RKe
Bias b =b" — D,y Rigidification b =Dy =b
accelerations bzc :b2A+(DzA17/ => bC :bA_q)A(cDA+q)B)—1(bA_bB)

C can be rigidified only if C’s principal joint is inactive and
24 both its children A and B are rigid nodes I(AIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Motion metrics

C C C C
® : Y, ’LPij P s 17
o (C) = flA \I}(l lI’(lz ffdl : Acceleration metric coefficients
f; vy, W
4 17 C C : Articulated body
_|_ f] I:)lw _|_ nC .
7 PS5 ' qi : Velocity of joint |
o q, : Acceleration of joint i
- T ° V : Customizable weight
V (C) — E qf Vg’ qf A‘ "1 matrices of joint i
icC

The acceleration metric value of an articulated body can be
computed before computing its joint accelerations!!

KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

ieC
A=l
Threshold: 3

Priority
Queue

[ &

L]
L]

*W:&_M_“ﬁ_#‘*:]
G=3 §=-6" ¢=6 G=-3 =2 G=-1 (G=1
26 The # of simulated joints: 0  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

M/O/ = 96 L T .

| Priority (€)= th" Aiq
Queue ieC A=l
Threshold: 3

©
L
[}
L
[ &

**H:]"Q—_M_F‘:_#H:]
G=3 §=-6" ¢=6 G=-3 =2 G=-1 (G=1
07 The # of simulated joints: 0  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

_ '-T .oo .

| Priority g=-3 W(C) = Eq,- A,q,
Queue ieC Ai )
Threshold: 3

[ &

L]
L]

OO 0-00
G=3 §=-6" ¢=6 G=-3 =2 G=-1 (G=1
08 The # of simulated joints: 1  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

_ '-T .oo .

| Priority G=-3 W(C) — Z(L' A;q;
Queue ieC Ai )

M) =81 AN = 6 Threshold: 3

81 pre—
—

[ &

L]

*W:&_M_“ﬁ_#ﬂ:}
G=3 §=-6" ¢=6 G=-3 =2 G=-1 (G=1
29 The # of simulated joints: 1  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

_ '-T .oo .

| Priority g=-3 W(C) = Eq,- A,q,
Queue ieC Ai )
M) =81 AN =6 Threshold: 3

¢+H:]-§—_M_H¥_F’H:]
67 §=6 (G=-3 =2 §=-1 =1
30 The # of simulated joints: 2  KAIST
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Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

36

31

Priority
Queue

AM) =

81

o =6

A7) =9

U

pr—
—

[ &

A0) = 96 (€)=Y 4/ A

A=l

AN =6 Threshold: 3

) = 36

*W:]"N—_M_“ﬂ_m:]
67 =6 §=-3 =2 G=-1 ¢=1
The # of simulated joints: 2  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

T
| Priority q=- Zcq Ay
Queue .. < Ai |
— | ) =81 SN =6 Threshold: 3
4=- :
A7) =9
6 |
pry ([ q— G ) pr—(
= O o Jo{ o)
6=3 4=-3 §=2 d4=-1 g=1

32 The # of simulated joints: 3  KAIST



Adaptive Forward Dynamics

e Adaptive joint selection
e Example: Back-substitution pass (/)

M/O/ = 96 L T .

|| roriy gon.. o= LaAG
Queue ot "ea,, icC Ai B I

— | /) =81 & Threshold: 3

G=03:0) G=-6" §=6  (=-3 q=PL20) 4 §=KE0) G=(=0)

The accelerations of joints within four . . . .
assemblies are Implicitly set to zero. The # of simulated joints: 3 KAIST
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View-Dependent Forward Dynamics

e How to best utilize the motion metrics to
save more computation time?

e How to minimize the error metric values
with a given threshold value?

Large-scale virtual world

View plane

Much occlusion
Very far objects
Many invisible objects

34 [Stephane R. et al., "05] KAIST
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View-Dependent Forward Dynamics

e How to best utilize the motion metrics to
save more computation time?

e Decrease weight coefficients for occluded
bodies

KAIST



View-Dependent Forward Dynamics

° joint selection
o Example: Back-substitution pass (l)
=) 4/ A
ieC
| Priority
Queue (O i= AB ,D,1,J,M
p— Occluded 1 othfﬁmse
Fegion Threshold: 3
— .*-m*’“—_w_nﬂ_m:j
=3 @¢=-6" (=6 §=-3 (=2 ¢=-1 =1

36 The # of simulated joints: 0  KAIST



View-Dependent Forward Dynamics

Priority
Queue

joint selection
o Example: Back-substitution pass ()

*Q{(C) — quTA,q,

—1 | Occluded
region

O] |-

4=3

4=

N

g

0) = 15 _
q:—3 @ ieC

_(0,i=AB,C,D,1,J,M

AN =6 " |1, otherwise

- Threshold: 3
AK) =4 @ AL) =1
G=2
pr— f pr— pr— ()
o Jo{ o o)

=3 §=2 ¢=-1 ¢=1

37
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View-Dependent Forward Dynamics

e How to best utilize the motion metrics to
save more computation time?

e Occluded bodies

e Decrease weight coefficients for occluded
bodies

e Set the user-specified threshold value to zero

. e Decrease the user-specified threshold valuelq.\I T
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View-Dependent Forward Dynamics

e Example

€: threshold

KAIST
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View-Dependent Forward Dynamics

e How to minimize the error metric values
with a given threshold value?

Threshold: 100

Assembly tree Priority queue KAIST




View-Dependent Forward Dynamics

e How to minimize the error metric values
with a given threshold value?

Threshold: 100
Global priority queue

Assembly tree

41 KAIST
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View-Dependent Forward Dynamics

e How to minimize the error metric values
with a given threshold value?

Threshold: 100
Global priority queue

|
£n8n £R&n

Assembly tree

KAIST
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View-Dependent Forward Dynamics

e How to minimize the error metric values
with a given threshold value?

Threshold: 100
Global priority queue

|
£a2n £28n - Lol

Assembly tree

KAIST
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View-Dependent Forward Dynamics

e How to minimize the error metric values
with a given threshold value?

After all... E Global priority queue

I

The global search can minimize
the global error metric value!

Assembly tree

KAIST
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Conclusion

e SLODs

e Hybrid kinetic/dynamic model

e Visibility culling
eConsistency problem
eCompleteness problem

e Adaptive forward dynamics
eControl the number of simulated joints by the
customizable motion metrics

e View-dependent forward dynamics

e Effectively utilize the motion metrics with
visibility info

KAIST



DCA For Forward Dynamics

e Appendix I
e Derivation of the articulated-body equation

lv = constant

f :%(Iv) =la+(vx I =lvx)v=la+vx lv

f=la+p (p=vx Iv)
a=aof +b (®=1"b=-dp)
[ aj [ I P, Py, - Py, IR f; I i b1 ]
as Py P, coe Doy, fs bo
- : : . : T
[ | LBy B s oy, | Lo | s )
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