
Hardware-Driven Ray Tracing

Jae-Sung Yoon
KAIST (Korea Advanced Institute of Science

and Technology)

2

Contents
● 1. Introduction
● 2. Acceleration Structure
● 3. Techniques for Hardware
● 4. Previous Hardware Implementations
● 5. Hardware Issues and Problems
● 6. Future Work

3

Introduction Ray Tracing
●One of the most popular and simple way of

doing global illumination.

[Purcell 2004]

4

Why Ray Tracing Hardware?
● CPU can accelerate only single-threaded

application
● CPU Cannot optimally exploit the inherent

parallelism in ray tracing.

CPU or DSP GPU or
Stream Processor

5

Basic Algorithm

Ray
Generator

Voxel
Precalc

Ray
Traverser

Ray
Intersector Shading

For BSP structure, Traversal is typically 2-3 times as
costly as intersection test [Wald 2001]

6

Acceleration Structure (AS)

[Martin 2005]
Uniform Grid KD-tree BVH

(bounding volume
hierarchy)

7

Spatial Subdivision Schemes
●Uniform Grid , KD-tree
● Commonalities

● 1. Multiple Reference
● triangles can straddles a voxel boundary

● 2. Can stop traversal at first intersection
● visit the voxels in order of increasing
distance from the ray origin

● 3. Stack

8

1. Uniform Grid (Construction)

● 1. Decide the resolution of the grid
● High resolution : fewer triangle intersection
● Low resolution : fewer voxel traversal
● Triangle/voxel = 20 works well [Woo]
● voxels alog the longest axis [Pharr]

● 2. Add a reference to the triangle in each
voxel

9

1. Uniform Grid (Traversal)

● 3D DDA(digital differential analyzer)
algorithm [Amanatides & Woo]

10

2. KD-tree (Construction)

● Top-down in a recursive fashion
● Choose an axis-perpendicular splitting

plane
● If a primitive straddles the split plane then

both child get a reference

11

2. KD-tree (Construction)

●Where to place the splitting plane?
● Surface area heuristic [MacDonald & Booth

1990]

[Wald 04][MacDonald 1990]

12

2. KD-tree (Construction)

13

2. KD-tree (Traversal)

●Given node N

● If N is leaf, intersection test for triangles
● If N is internal, determine which child node

is first hit by ray
● Stack is needed (stack per ray)

But, GPU don’t have Stack

14

3. BVH (Construction)

● There is no known algorithm for
constructing optimal BVH

● Cost function - surface area heuristic
[Goldsmith & Salmon]

● AABB is most widely used.
● There are two major paper for BVH

construction
- [Kay & Kajiya] top-down
- [Goldsmith & Salmon] bottom-up

15

3. BVH (Construction)

Oriented
Bounding Box

K-dops

Sphere
Axis-aligned

bounding box

Very cheap to
compute

16

3. BVH (Construction) Kay/Kajiya

17

3. BVH (Construction) Goldsmith/Salmon

● Assign first triangle as the root
● For other objects, best position in the tree

is found by cost function

18

3. BVH (Traversal)

●Unlike the kd-tree, all the children have to
be visited

● Stack is needed

●Main issue : order in which a node’s
children are traversed

19

Techniques for
Acceleration & Hardware
● 1. Mailbox [Amanatides & Woo]
● 2. Stackless KD-tree traversal [Foley 2005]
● 3. Distributed Interactive Ray Tracing of

Dynamic Scenes [Wald 2003]

20

1.Mailbox (spatial structure)

● Problem
● If triangle is split into two child voxel, each

voxel has reference to the original triangle
● We could test intersection against the same ray

more than once.

● Solution
● store the ID of ray with the triangle to skip the

test the second time

21

2. Stackless KD-tree Traversal
● KD-Restart

● If leaf intersection fail, update (tmin, tmax)
● Then, restart the search at the root

● KD-Backtrack
● Store the parent link in the nodes
● If leaf intersection fail, update (tmin, tmax)
● Then, move up the tree to find parent

22

3. Distributed Interactive Ray
Tracing of Dynamic Scenes
●Motivation : In dynamic scene, large parts

of a scene is static.
●Objects can be separated into three classes

● Static objects
● Objects undergoing affine transformation

● x Ax + B
● Objects with unstructured motion

23

● For affine transformation,
● (Ray – transformed Object) intersection ==

(inverse transformed Ray – Object) intersection

● Can remove the reconstruction cost for
transforming objects

●Only top-level structure has to be rebuilt

Two-level BSP

24

Hardware Implementations
● 1. Streaming Ray Tracing [Purcell 2002]
● 2. Static SaarCOR [Schmittler 2002]
● 2. Dynamic SaarCOR [Schmittler 2004]

● Upgrade version of Static SaarCOR
● 3. RPU [Woop 2005]

● Programmable version of SaarCOR
● 4. Ray Tracing in FPGA [Lee 2007]

25

1. Streaming Ray Tracing
[Purcell 2002]
●Used a streaming processor
● All geometry is stored in texture memory

before rendering
●Used a uniform grid acceleration structure
●Used static scene

26

ray

ray & voxel address

ray & triangle(hit)

secondary ray

color

miss

27

● Grid list contains a pointer to a list of triangles
● Triangle list contains a pointers to vertex data

28

29

2. Dynamic SaarCOR[Schmittler 2004]

● Special purpose hardware for ray tracing
● Concerned about AS reconstruction using

[Wald 2003] method
●Using cache[Schmittler 2003], load scene

data from host
●Used a KD-tree
●Used unit triangle intersection method

30

Architecture

Geometry &
AS stored

Scene data &
camera setting

upload

Dynamic ray
tracing
pipeline

31

Operation Details

1. RGS : ray generation

2. a: ray & T(matrix) are sent

3. Transformation

4. b & Traversal : top-level traversal

5. c: ray & objects are sent

6. Mailbox

7. d & Transformation : ray
transform into object space

8. recursive traversal

32

Operation Details

9. Transformation : ray transform to
unit triangle space

10. e & Intersection

11. f & recursive traversal

12. g: final result sent

13. RGS : shading

33

3. RPU [Woop 2005]
● Programmable hardware for ray tracing
● Traversal needs dedicated unit
● Same algorithm with Dynamic SaarCOR
●Upgrade version of Dynamic SaarCOR

4D-vector dual-issue
system

34

Architecture

Traversal Processing Unit

Mailbox List Processing Unit

Shader Processing Unit

35

Dedicated Traversal Unit
● K-D tree traversal is very expensive scalar

floating point operation.
● So, programmable hardware is inefficient
● Stack is in the SPU register

Registers in SPU

SPU is quite similar
with current GPU

Communicate with main
memory because on-chip
stack can be not sufficient

36

Intersection Test Program
Used unit triangle intersection method
Program quite fit into GPU

Vector
transformation

Scalar operations

Dual issue feature is
efficient

37

4. Ray Tracing in FPGA
[Lee 2007]

So
ft

w
ar

e
H

ar
dw

ar
e

1. Dedicated Hardware

2. Used KD-backtrack

	Slide Number 1
	Contents
	Introduction Ray Tracing
	Why Ray Tracing Hardware?
	Basic Algorithm
	Acceleration Structure (AS)
	Spatial Subdivision Schemes
	1. Uniform Grid (Construction)
	1. Uniform Grid (Traversal)
	2. KD-tree (Construction)
	2. KD-tree (Construction)
	2. KD-tree (Construction)
	2. KD-tree (Traversal)
	3. BVH (Construction)
	3. BVH (Construction)
	3. BVH (Construction) Kay/Kajiya
	3. BVH (Construction) Goldsmith/Salmon
	3. BVH (Traversal)
	Techniques for �Acceleration & Hardware
	1.Mailbox (spatial structure)
	2. Stackless KD-tree Traversal
	3. Distributed Interactive Ray Tracing of Dynamic Scenes
	Slide Number 23
	Hardware Implementations
	1. Streaming Ray Tracing [Purcell 2002]
	Slide Number 26
	Slide Number 27
	Slide Number 28
	2. Dynamic SaarCOR[Schmittler 2004]
	Architecture
	Operation Details
	Operation Details
	3. RPU [Woop 2005]
	Architecture
	Dedicated Traversal Unit
	Intersection Test Program
	4. Ray Tracing in FPGA�[Lee 2007]

