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Introduction               Ray Tracing
●One of the most popular and simple way of 

doing global illumination.

[Purcell 2004]
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Why Ray Tracing Hardware?
● CPU can accelerate only single-threaded 

application
● CPU Cannot optimally exploit the inherent 

parallelism in ray tracing.

CPU or DSP GPU or
Stream Processor
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Basic Algorithm

Ray
Generator

Voxel
Precalc

Ray
Traverser

Ray
Intersector Shading

For BSP structure, Traversal is typically 2-3 times as 
costly as intersection test  [Wald 2001]
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Acceleration Structure (AS)

[Martin 2005]
Uniform Grid KD-tree BVH 

(bounding volume 
hierarchy)
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Spatial Subdivision Schemes
●Uniform Grid , KD-tree
● Commonalities

● 1. Multiple Reference
● triangles can straddles a voxel boundary

● 2. Can stop traversal at first intersection
● visit the voxels in order of increasing 
distance from the ray origin

● 3. Stack
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1. Uniform Grid (Construction)

● 1. Decide the resolution of the grid
● High resolution : fewer triangle intersection
● Low resolution : fewer voxel traversal
● Triangle/voxel = 20 works well [Woo]
● voxels alog the longest axis [Pharr]

● 2. Add a reference to the triangle in each 
voxel
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1. Uniform Grid (Traversal)

● 3D DDA(digital differential analyzer) 
algorithm [Amanatides & Woo]
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2. KD-tree (Construction)

● Top-down in a recursive fashion
● Choose an axis-perpendicular splitting 

plane
● If a primitive straddles the split plane then 

both child get a reference
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2. KD-tree (Construction)

●Where to place the splitting plane?
● Surface area heuristic [MacDonald & Booth 

1990]

[Wald 04][MacDonald 1990]
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2. KD-tree (Construction)
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2. KD-tree (Traversal)

●Given node N

● If N is leaf, intersection test for triangles
● If N is internal, determine which child node 

is first hit by ray
● Stack is needed ( stack per ray )

But, GPU don’t have Stack
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3. BVH (Construction)

● There is no known algorithm for 
constructing optimal BVH

● Cost function - surface area heuristic 
[Goldsmith & Salmon]

● AABB is most widely used.
● There are two major paper for BVH 

construction
- [Kay & Kajiya]  top-down
- [Goldsmith & Salmon]  bottom-up
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3. BVH (Construction)

Oriented 
Bounding Box

K-dops

Sphere
Axis-aligned 

bounding box

Very cheap to 
compute
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3. BVH (Construction) Kay/Kajiya
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3. BVH (Construction) Goldsmith/Salmon

● Assign first triangle as the root
● For other objects, best position in the tree 

is found by cost function
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3. BVH (Traversal)

●Unlike the kd-tree, all the children have to 
be visited

● Stack is needed

●Main issue : order in which a node’s 
children are traversed
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Techniques for 
Acceleration & Hardware
● 1. Mailbox [Amanatides & Woo]
● 2. Stackless KD-tree traversal [Foley 2005]
● 3. Distributed Interactive Ray Tracing of 

Dynamic Scenes [Wald 2003]
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1.Mailbox (spatial structure )

● Problem
● If triangle is split into two child voxel, each 

voxel has reference to the original triangle
● We could test intersection against the same ray 

more than once.

● Solution
● store the ID of ray with the triangle to skip the 

test the second time
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2. Stackless KD-tree Traversal
● KD-Restart

● If leaf intersection fail, update (tmin, tmax)
● Then, restart the search at the root

● KD-Backtrack
● Store the parent link in the nodes
● If leaf intersection fail, update (tmin, tmax)
● Then, move up the tree to find parent
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3. Distributed Interactive Ray 
Tracing of Dynamic Scenes
●Motivation : In dynamic scene, large parts 

of a scene is static.
●Objects can be separated into three classes

● Static objects
● Objects undergoing affine transformation

● x Ax + B
● Objects with unstructured motion



23

● For affine transformation, 
● (Ray – transformed Object) intersection ==

(inverse transformed Ray – Object) intersection

● Can remove the reconstruction cost for 
transforming objects

●Only top-level structure has to be rebuilt

Two-level BSP
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Hardware Implementations
● 1. Streaming Ray Tracing [Purcell 2002]
● 2. Static SaarCOR [Schmittler 2002]
● 2. Dynamic SaarCOR [Schmittler 2004]

● Upgrade version of Static SaarCOR
● 3. RPU [Woop 2005]

● Programmable version of SaarCOR
● 4. Ray Tracing in FPGA [Lee 2007]
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1. Streaming Ray Tracing 
[Purcell 2002]
●Used a streaming processor
● All geometry is stored in texture memory 

before rendering
●Used a uniform grid acceleration structure
●Used static scene
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ray

ray & voxel address

ray & triangle(hit)

secondary ray

color

miss
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● Grid list contains a pointer to a list of triangles
● Triangle list contains a pointers to vertex data
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2. Dynamic SaarCOR[Schmittler 2004]

● Special purpose hardware for ray tracing
● Concerned about AS reconstruction using 

[Wald 2003] method
●Using cache[Schmittler 2003], load scene 

data from host 
●Used a KD-tree
●Used unit triangle intersection method
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Architecture

Geometry & 
AS stored

Scene data & 
camera setting 

upload

Dynamic ray 
tracing 
pipeline
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Operation Details

1. RGS : ray generation

2. a: ray & T(matrix) are sent

3. Transformation

4. b & Traversal : top-level traversal

5. c: ray & objects are sent

6. Mailbox

7. d & Transformation : ray 
transform into object space

8. recursive traversal
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Operation Details

9. Transformation : ray transform to 
unit triangle space

10. e & Intersection

11. f & recursive traversal

12. g: final result sent

13. RGS : shading
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3. RPU [Woop 2005]
● Programmable hardware for ray tracing
● Traversal needs dedicated unit
● Same algorithm with Dynamic SaarCOR
●Upgrade version of Dynamic SaarCOR

4D-vector dual-issue 
system
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Architecture

Traversal Processing Unit

Mailbox List Processing Unit

Shader Processing Unit
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Dedicated Traversal Unit
● K-D tree traversal is very expensive scalar 

floating point operation.
● So, programmable hardware is inefficient
● Stack is in the SPU register

Registers in SPU

SPU is quite similar 
with current GPU

Communicate with main 
memory because on-chip 
stack can be not sufficient
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Intersection Test Program 
Used unit triangle intersection method
Program quite fit into GPU

Vector 
transformation

Scalar operations 

Dual issue feature is 
efficient
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4. Ray Tracing in FPGA
[Lee 2007]

So
ft

w
ar

e
H

ar
dw

ar
e

1. Dedicated Hardware

2. Used KD-backtrack
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