CS680:

Advanced Computer Graphics

- Scalable Global Illumination Algorithms

Sung-Eui Yoon (윤성의)

Course URL:

http://jupiter.kaist.ac.kr/~sungeui/SGA/

About the Instructor

- Joined KAIST at July last year
- B.S., M.S. at Seoul National Univ.
- Ph.D. at Univ. of North Carolina-Chapel Hill
- Post. doc at Lawrence Livermore Nat'l Lab
- Main research focus
 - Handling of massive geometric data for various computer graphics and geometric problems

About the Instructor

- Contact info
 - Email: sungeui@gmail.com
 - Office: 3432 at CS building
 - Homepage: http://jupiter.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 4:00pm ~ 5:30pm on TTh
- Office hours
 - 5:30-6:00pm right after Tue. and Thur. classes at my office
- TA
 - 박정현 (JeongHyeon Park)
 - parkjh@tclab.kaist.ac.kr
 - Office hour: 2:00~2:30 on TTh
 - Room: 3439

About the Course

- We will focus on the following things:
 - Study various methods for physically-based rendering
 - Identify pros and cons of current methods
 - Design better technologies as your final project

Photo-Realistic Rendering

Achieved by simulating light and material interactions

- Rendering equation
 - Mathematical formulation of light and material interactions

Global Illumination (GI)

- GI algorithms solve the rendering equation
 - Generate 2D image from 3D scene

Emission (light sources)
Geometry (objects)
BRDF (materials)

Classic Methods of GI

- Ray tracing
 - Introdued by Whitted in 1980
- Radiosity
 - Introduced in 1984
- Monte Carlo rendering

Ray Tracing

Assume perfect specular or diffuse material

Radiosity

Assume diffuse inter-reflections

Advanced Global Illumination

- Extend to handle more realistic materials than just perfect specular/diffuse
 - Classic ray tracing and classic radiosity are basic building blocks

from Pixar movie

Scalable GI

- How can we handle complexity?
 - Many objects
 - Many triangles
 - Many lights
 - Complex BRDFs
 - Dynamic scenes, etc.
- Can we achieve interactive GI on commodity hardware?

Some of Topic Lists

- Ray tracing
- Radiosity
- Rendering equations
- Monte Carlo method
- Levels-of-detail or multi-resolution techniques
- Many light problems
- Coherent ray tracing
- Shadow maps
- Dynamic and massive models

- Precomputed radiance transfer
- Real-time rendering
- Irradiance caching
- Sampling and reconstruction
- Data compression
- Parallel computation
- Realistic rendering

Prerequisites

- Undergraduate computer graphics
- If you are not sure, please consult the instructor at the end of the course

Course Overview

- 1/3 of lectures and 2/3 of student presentations
 - This is a research-oriented course
 - Reading list containing about 70 papers
- What you will do:
 - Choose a topic from the topic list & read papers related to the topic
 - Present talks explaining the topic to us
 - Propose idea and implement it as a final project
 - Quiz and mid-term
 - and, have fun!

Presentations and Final Project

- Read papers on a chosen topic
 - Look at pros and cons of each method
 - Think about how we can efficiently handle more realistic and complex scene
- Propose and implement ideas to address those problems
 - Prepare a final report
- Team project is allowed
 - Role of each student should be very clear

Review Service

- Let's meet before your in-class presentations
- I'll give you comments on your reports and presentations

Course Awards

- Best speaker and best project
- For the best project, cost for attending the premium conf. (e.g., SIGGRAPH) will be supported
 - Lead author will get it
 - We may not select the best project if the project does not improve the state-of-the-art methods
- For the best presenter, a research equipment will be supported

Course Overview

- Grade policy
 - Class presentations: 30%
 - Quiz, assignment, and mid-term: 30%
 - Final project: 40%

- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Resource

- No textbook
- Reference
 - Advanced Global Illumination, Philip Dutre et al. 2nd edition
 - Physically based renderig, Matt Pharr et al.
 - Realistic Image Synthesis Using Photon Mapping, Henrik Jensen
 - Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

Other Reference

- Our paper reading list
- SIGGRAPH course notes and video encore
- Technical papers
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/
- Course homepages
- Google or Google scholar

Honor Code

- Students are here for the learning not the grade
 - Collaboration encouraged, but assignments must be your own work
 - Cite any other's work if you use their code

Schedule

- Please refer the course homepage:
 - http://jupiter.kaist.ac.kr/~sungeui/SGA/

Homework

- Refresh materials that you learned at your undergraduate computer graphics course
 - Go over course slides of CS480
 - http://sglab.kaist.ac.kr/~sungeui/CG/

There will be a quiz at the next class

Next Time

Ray tracing, radiosity

