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Previous Time

e Radiometry
e Rendering equation
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Two Forms of the Rendering
Equation

e Hemisphere integration

e Area integration

& Kavita Bala, Computer Science, Cornell University
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Radiance Evaluation

e Fundamental problem in GI algorithm

e Evaluate radiance at a given surface point in a
given direction

e Invariance defines radiance everywhere else

& Kavita Bala, Computer Science, Cornell University
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Radiance Evaluation

.. find paths between sources and surfaces to be shaded

& Kavita Bala, Computer Science, Cornell University (AIST



Hard to Find Paths
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Why Monte Carlo?

e Radiace Is hard to evaluate

Lix <« YY)

L.(x—0)

ha
Telins

e Sample many paths
e Integrate over all incoming directions

e Analytical integration is difficult
e Need numerical techniques

From kavita’s slides
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Monte Carlo Integration

e Numerical tool to evaluate integrals
e Use sampling
e Stochastic errors

e Unbiased
e On average, we get the right answer
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Probability

« Random variable x

 Possible outcomes:
— each with probability:

« £E.9g. ‘average die’: 2,3,3,4,4,5

7 3 1 ] 1
— outcomes:

— probabillities:

= Kavita Bala, Computer Sciences, Cornell University



Expected value

+ Expected value = average value

« E.g. die:

& Kavita Bala, Computer Science, Cornell University



Variance

« Expected ‘distance’ to expected value

« E.g. die:

* Property:

& Kavita Bala, Computer Science, Cornell University



Continuous random variable

Random variable
Probability density function (pdf)
Probability that variable has value x:

Cumulative distribution function (CDF)
— CDF Is non-decreasing, positive

& Kavita Bala, Computer Science, Cornell University



Continuous random variable

« Expected value:

« \ariance:

« Deviation:

& Kavita Bala, Computer Science, Cornell University



Continuous random variable

"' A

Probability that x belongs to [a’.b’]

& Kavita Bala, Computer Science, Cornell University



Uniform distribution




Uniform distribution
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Probability that x belongs to [a’.b’]
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More than one sample

Consider the weighted sum of N samples

Expected value

Variance

Deviation

= Kavita Bala, Computer Science, Cornell University



More than one sample

Consider the weighted sum of N samples

Expected value

Variance

Deviation

& Kavita Bala, Computer Science, Cornell University



Numerical Integration

* A one-dimensional integral:

& Kavita Bala, Computer Science, Cornell University



Deterministic Integration

« Quadrature rules:

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration

Primary estimator:

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration

Primary estimator:

Unbiased estimator!

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration

Primary estimator:

Unbiased estimator!

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration: Error

Variance of the estimator —» a measure of
the stochastic error

)

Consider p(x) for estimate
*We will study it as importance sampling later

& Kavita Bala, Computer Science, Cornell University



More samples

Secondary estimator

Generate N random samples x,

Estumator:

Variance

2 Kavita Bala, Computer Sc%n ce, Cornell University



More samples

Secondary estimator

Generate N random samples X,

Estimator:

Variance

& Kavita Bala, Computer Sc%nn&, Cornell University



Monte Carlo Integration

« Expected value of estimator

— on ‘average’ get right result: unbiased

« Standard deviation o Is a measure of the
stochastic error

& Kavita Bala, Computer Science, Cornell University



MC Integration - Example

— Integral

_ Uniform sampling 11— ;

— Samples : e — /

_Jb

X; = .80 <[>==2.74
X, = .41 <[==1.44
X, = .02 <I>=0.96

Xy = .38 <I>=0.75

& Kavita Bala, Computer Science, Cornell University



MC Integration - Example

e Integral
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MC Integration: 2D

* Primary estimator:

& Kavita Bala, Computer Science, Cornell University



MC Integration: 2D

« Secondary estimator:

& Kavita Bala, Computer Science, Cornell University



Monte Carlo Integration - 2D

 MC Integration works well for higher
dimensions

« Unlike quadrature

& Kavita Bala, Computer Science, Cornell University
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Advantages of MC

e Convergence rate of O(%)

e Simple
e Sampling
e Point evaluation

e General
e Works for high dimensions
e Deals with discontinuities, crazy functions, etc.

KAIST



MC Integration - 2D example

* Integration over hemisphere:

/ Vs

/ J— . A
| rd

C /

& Kavita Bala, Computer Science, Cornell University



Hemisphere Integration example

Irradiance due to light source:

& Kavita Bala, Computer Science, Cornell University
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Importance Sampling

e Take more samples in important regions,
where the function is large
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MC integration - Non-Uniform

Some parts of the integration domain have
higher importance

Generate samples according to density
function p(x)

Estimator?

What Is optimal p(x)?

& Kavita Bala, Computer Science, Cornell University



MC integration - Non-Uniform

« Generate samples according to density
function p(x)

+ Why?

« But.....

& Kavita Bala, Computer Science, Cornell University



Example

 Function:

= Kavita Bala, Computer Science, Cornell University



Importance Sampling

Generate samples from density function p(x)

Optimal p(x)?

General principle:

— Closer shape of p(x) Is to shape of f(x), lower the
variance

Variance can increase If p(x) Is chosen badly

& Kavita Bala, Computer Science, Cornell University
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Sampling according to pdf

e Inverse cumulative distribution function
e Rejection sampling
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Inverse Cumulative Distribution
Function — Discrete Case

» Consider discrete events x; o4
— with probability p; '

0.2
» Select x; If:

Pt . P <S<pyt...p,t pi‘

Sum(p;)

-
T
-

, given uniform sampling

42 Ertiavita Bala, Computer Scisnice, Cornell University r
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Continuous Random Variable

e Algorithm
e Pick u uniformly from [O, 1)
e Outputy = P-1(u), where P(y) :j_y p(x)dx
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Non-Uniform Samples

» 1) Choose a normalized !
probability density function
P(x) | /
p(x)
0 0

& Kavita Bala, Computer Science, Cornell University




Non-Uniform Samples

» 1) Choose a normalized

>

probability density function /

p(x) 1

» 2) Integrate to get a
cumulative probability

distribution function P(x): o | /

Note this 1s simuilar to computing

& Kavita Bala, Computer Science, Cornell University



Non-Uniform Samples

* 1) Choose a normalized
probability density function

p(}f) A A
+ 2) Integrate to get a |
probabllity
distribution function P(x): ot
» 3) Invert P: 0 1

Note this 1s similar to going
from v axis to X in discrete case!

& Kavita Bala, Computer Science, Cornell University



Cosine distribution

& Kavita Bala, Computer Science, Cornell University



Rejection Method

e Often not possible to compute the inverse
of cdf

* Pick &,, &,

—

» If &, <f1(g,), select &,

* |s this efficient? What determines
efficiency? A(f)/A(rectangle) KAIST
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Summary

e Monte Carlo integration
e Estimators
e Sampling non-uniform distribution
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Next Time

e Monte Carlo ray tracing
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