최근 딥러닝 기반 이미지 검색 기술에 대한 소개

Jaeyoon Kim (김재윤)

Outline

- Learning-based approaches
- Descriptor whitening
- Benchmarks (training and test data)
- Post-processing on online time

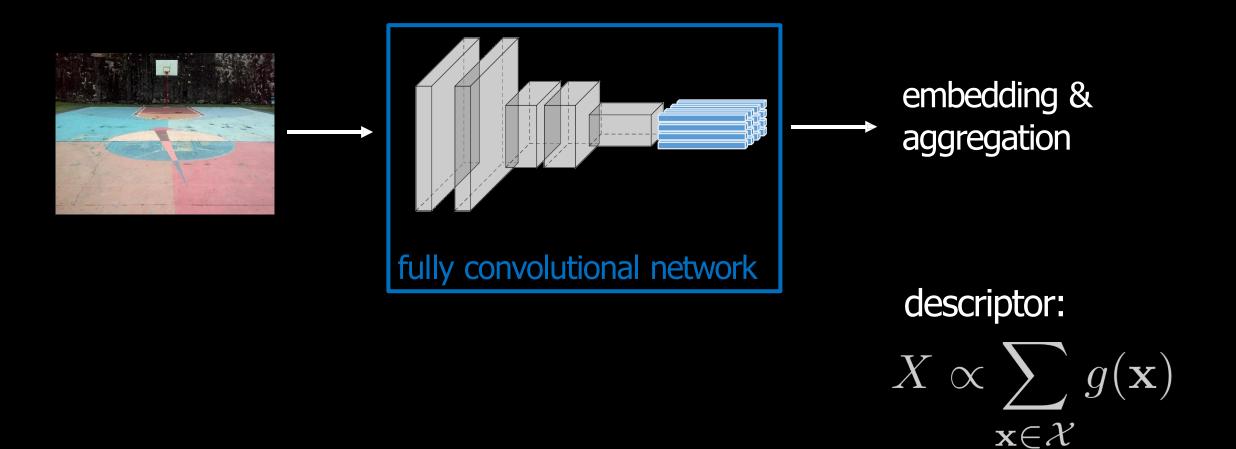
Learning-based methods

Global descriptor

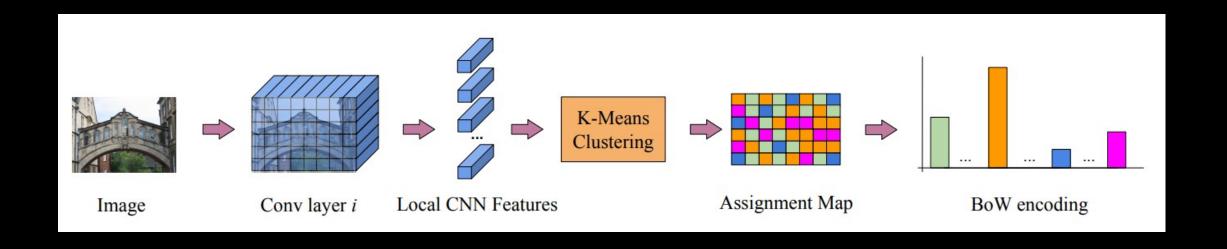
$$X = f(\mathbf{x}) \in \mathbb{R}^d$$

- Instance search reduces to similarity search in d-dimensional space
- Compatible with efficient nearest neighbor techniques

Global descriptors with CNNs



BoW with CNN features



- Used with pre-trained features and hard assignment
- Soft assignment needed for training

Sum pooling – SPoC descriptor

Descriptor

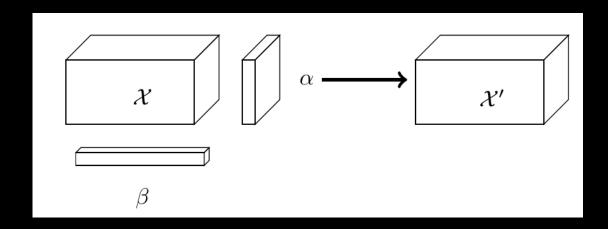
$$X \propto \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}$$

Pair-wise similarity

$$X^{\top}Y \propto \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{y} \in \mathcal{Y}} \mathbf{x}^{\top}\mathbf{y}$$

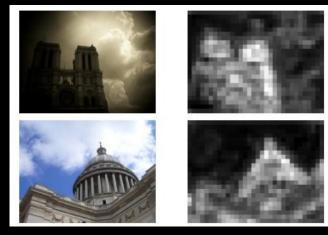
- Simple but works
 - → discriminative power of CNN activations

Weighted sum pooling - CroW descriptor



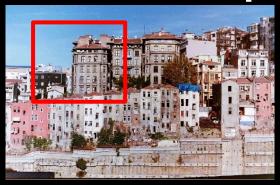
a: weight based on L2 norm of local descriptors

β: inverted-document-frequency weight

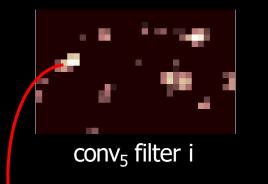


example of a

Max pooling – MAC descriptor



Input image



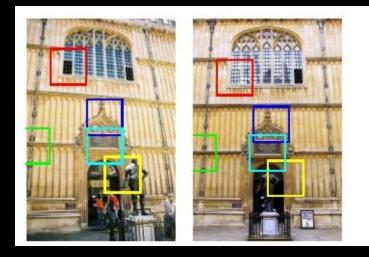
maximum activation

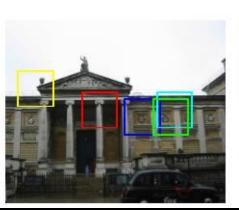
$$MAC = [f_1, \dots, f_i, \dots, f_K]$$

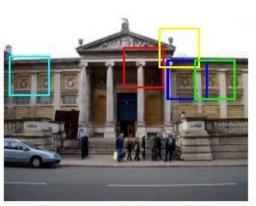
[Razavian et al., MTA'16] [Tolias et al., ICLR'16]

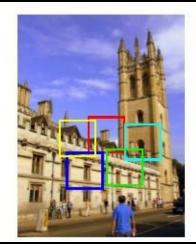
Max pooling – MAC descriptor

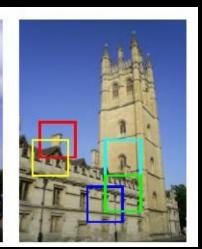
pair 1 pair 2 pair 3











regions for top matching components different color per component

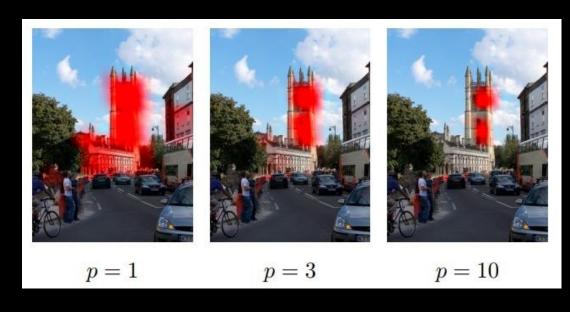
[Razavian et al., MTA'16] [Tolias et al., ICLR'16]

Generalized mean pooling – GeM descriptor

$$X \propto \left(\frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^p\right)^{\frac{1}{p}}$$

where \mathbf{x}^p is element-wise power

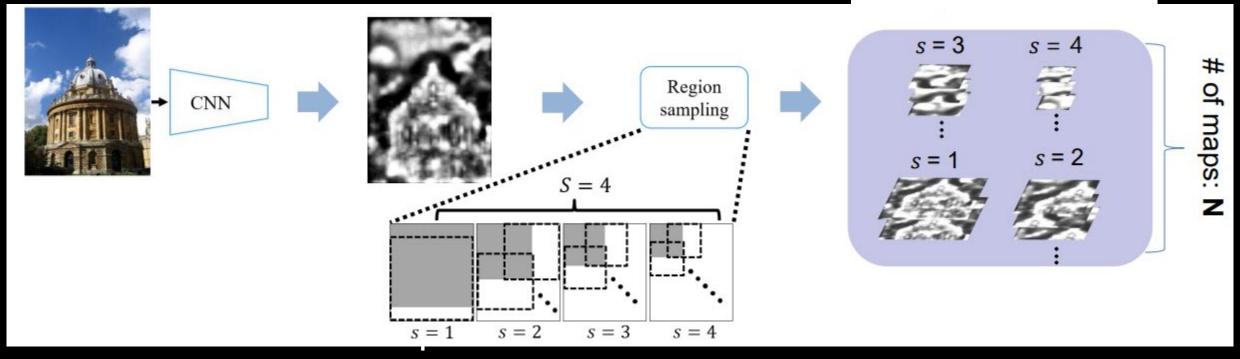
 $p \rightarrow \infty$ max pool (MAC) p = 1 avg pool (SPoC)



[Radenovic et al., PAMI'19]

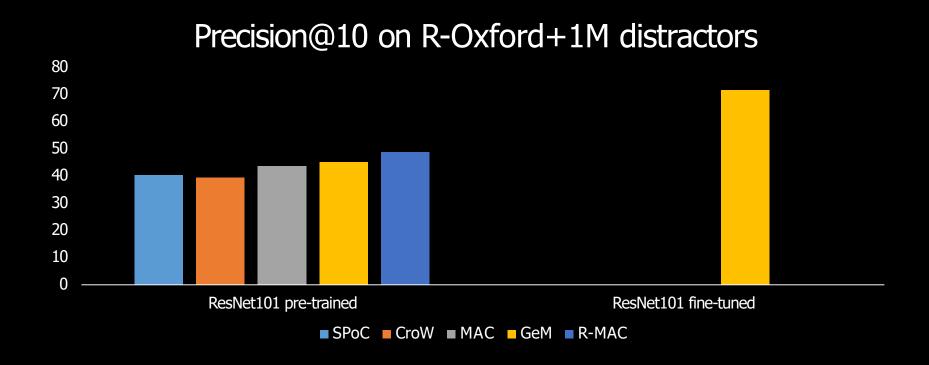
Hybrid – R-MAC descriptor

Regional feature maps 4 scales



Sum aggregate

Performance comparison



Fine-tuning improvement for GeM: +26.6%

Descriptor whitening

Descriptor processing with PCA

$$\hat{\mathbf{x}} = P^{\top}(\mathbf{x} - \mu)$$

$$P \in \mathbb{R}^{d \times d}$$

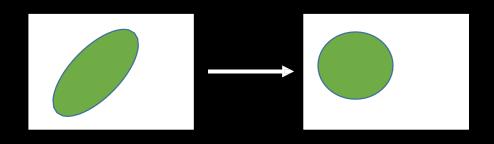
eigen-vectors as columns

$$\mu \in \mathbb{R}^d$$

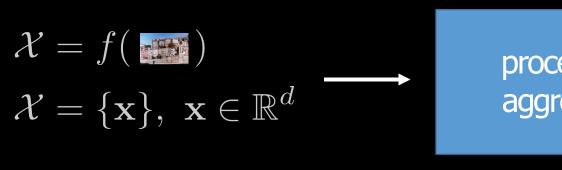
mean vector glo

$$\mathbf{x} \in \mathbf{R}^d$$

bal descriptor



Post-processing with whitening



local descriptor set

process & aggregate

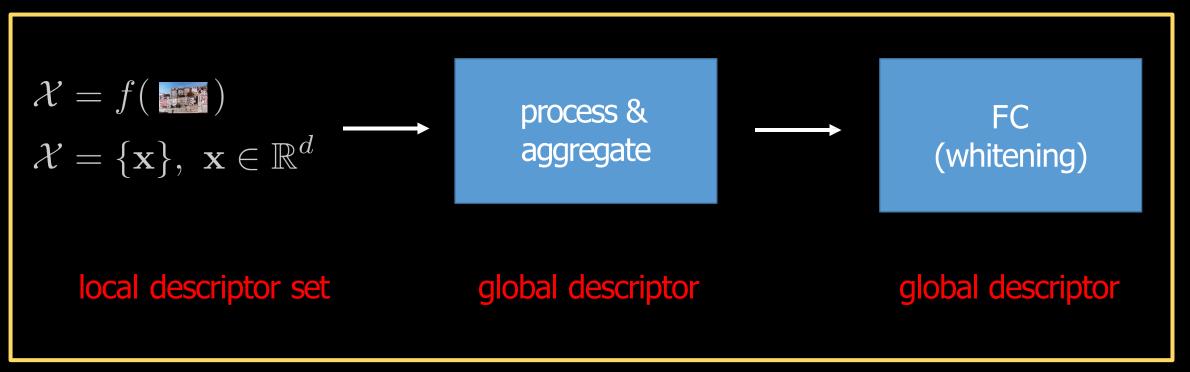
global descriptor

post-processing (whitening)

global descriptor

learned end-to-end

Post-processing with whitening



learned end-to-end

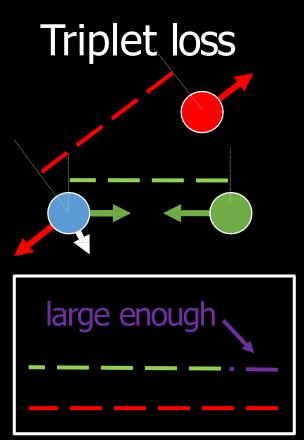
https://github.com/filipradenovic/cnnimageretrieval-pytorch

Training loss

Loss functions for metric learning

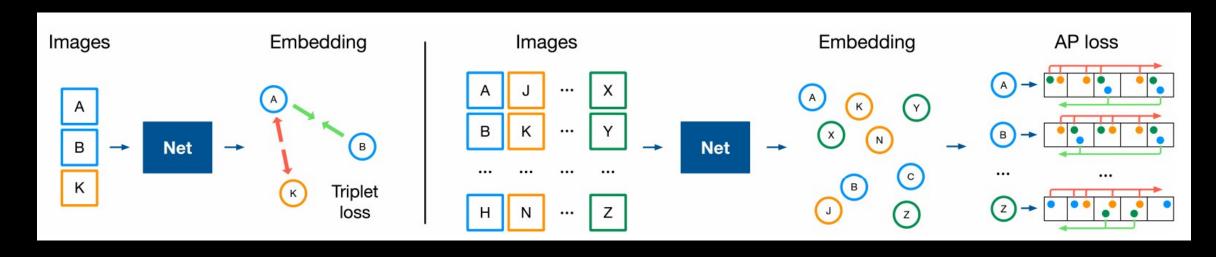
Contrastive loss

- Sampling from discrete class labels
 - problem: large intra-class variability
- Need automatic ways for pair-wise labels

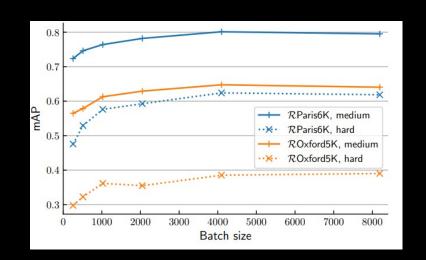


anchor negative positive

Average precision loss

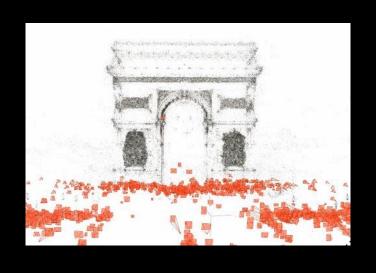


The larger the batch the better → no need to sample



Training data

Training data from SfM

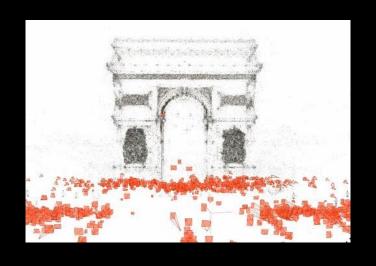


7.4M images → 713 training 3D models

[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

Training data from SfM

camera orientation known number of inliers known





7.4M images → 713 training 3D models

[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

Training data from SfM: hard negatives

Negative examples: images from different 3D models than the query **Hard negatives**: closest negative examples to the query

[Radenovic et al. PAMI'19]

Training data from SfM: hard positives

Positive examples: images that share 3D points with the query Hard positives: positive examples not close enough to the query

anchor

top 1 by CNN top 1 by inliers

random from top k by inliers

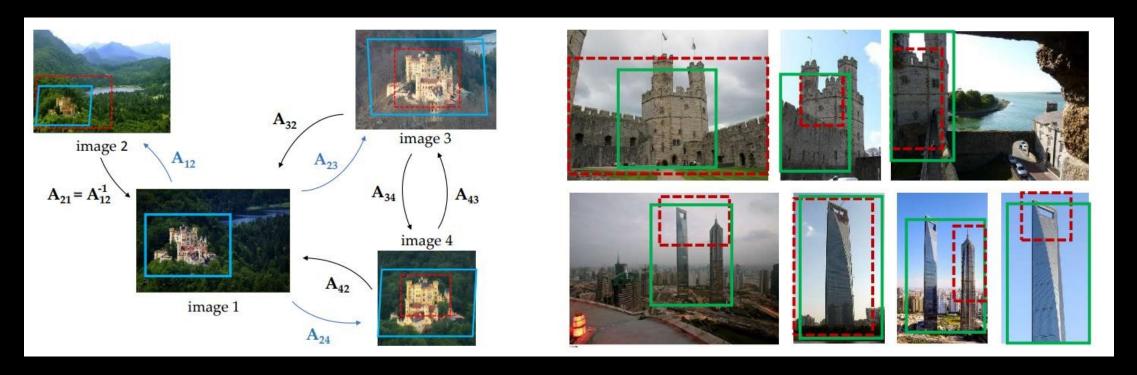
harder positives

[Radenovic et al. PAMI'19]

Class labels + cleaning

Use classical computer vision to collect training data:

→ Bag-of-Words and spatial verification



Benchmarks

Instance retrieval (buildings, landmarks)

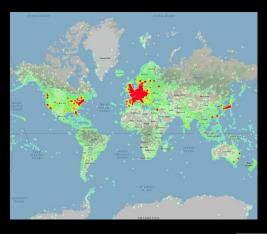
Manually constructed ground truth

- Oxford buildings [Philbin et al., CVPR'07]
- Paris [Philbin et al., CVPR'08]
- Oxford/Paris revisited + 1M distractors [Radenovic et al., CVPR'18]

http://cmp.felk.cvut.cz/revisitop/

Landmark recognition and retrieval

Crowd-sourced ground truth



Google Landmarks Dataset

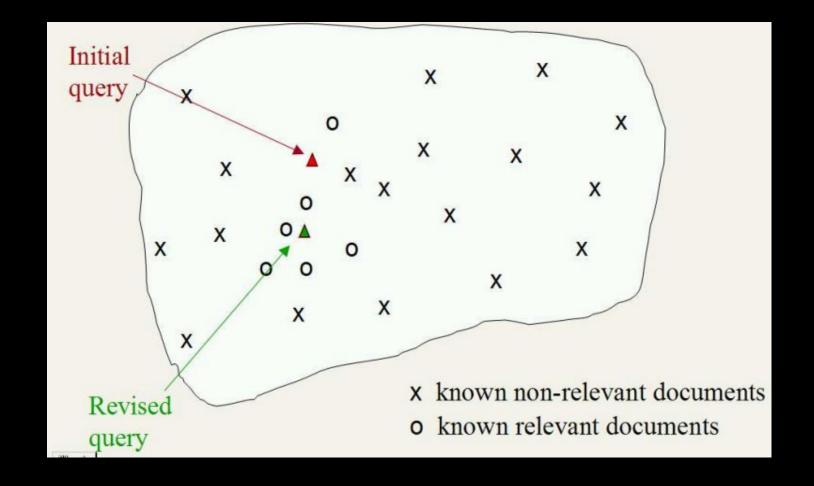
https://github.com/cvdfoundation/google-landmark

- Recognition training set
 4.1m images
 200k landmarks
- Retrieval index set
 762k images (1/3 decrease)
 101k landmarks
- Test set
 118k images
 about 1% depicts landmarks

Post-processing on online time

Query expansion

Use NN information to get more confident query.

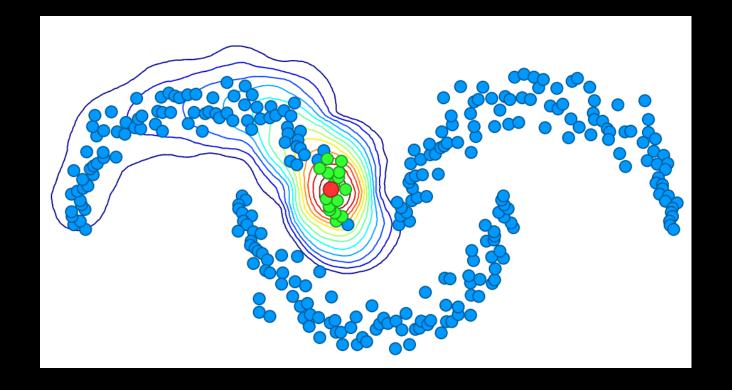


Diffusion(random walk) on feature space

High dimensional feature is likely to have a manifold shape.

$$\mathbf{f}^t = \alpha S \mathbf{f}^{t-1} + (1 - \alpha) \mathbf{y}.$$

Iterative manner with affinity graph



Performance comparison

