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Outline

» Learning-based approaches

» Descriptor whitening

« Benchmarks (training and test data)
* Post-processing on online time

Most of this presentation materials was built upon Tolias’s.



Learning-based methods



Global descriptor

 Instance search reduces to similarity search in d-dimensional space

« Compatible with efficient nearest neighbor techniques



Global descriptors with CNNs

embedding &
aggregation

descriptor:

XocZg(X)

XeEX



BoW with CNN features

K- Mt’;"lﬂs
Clustermg o % =

Image Conv layer i Local CNN Features Assignment Map BoW encoding

» Used with pre-trained features and hard assignment
« Soft assignment needed for training

[Mohedano et al. ICMR'16]



Sum pooling — SPoC descriptor

XOCZX

XcEX

 Descriptor

* Pair-wise similarity

XY Z Z X'y
xXxeEX yeY

 Simple but works
- discriminative power of CNN activations

[Babenko & Lempitsky, ICCV'15]



Weighted sum pooling — CroW descriptor

a: weight based on L2 norm of local descriptors

B: inverted-document-frequency weight S5 g
example of @

[Kalantidis et al., ECCV’16]



Max pooling — MAC descriptor
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maximum activation

MAC = [flj--'yfi7"'7fK]

[Razavian et al.,, MTA'16] [Tolias et al., ICLR'16]



Max pooling — MAC descriptor

pair 1 pair 2 pair 3

regions for top matching components
different color per component

[Razavian et al.,, MTA'16] [Tolias et al., ICLR'16]



Generalized mean pooling — GeM descriptor

> p — oo max pool (MAC)
1 p=1 avg pool (SPoC)
> X

[Radenovic et al.,, PAMI'19]



Hybrid — R-MAC descriptor

Regional feature maps
4 scales
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« Sum aggregate

[Tolias et al., ICLR'16]



Performance comparison

Precision@10 on R-Oxford+1M distractors
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Fine-tuning improvement for GeM: +26.6%




Descriptor whitening



Descriptor processing with PCA
x=DPr' (x — 1)
P € RdXd eigen-vectors as columns

= Rd mean vector glo

bal descriptor
x € R“ P

m m [Jegou & Chum, ECCV'12]



Post-processing with whitening

X =f(EH)

learned end-to-end

-



Post-processing with whitening

P — f ( mj:ig" )
X ={x}, x € R

learned end-to-end

https://github.com/filipradenovic/cnnimageretrieval-pytorch



Training loss



Loss functions for metric learning

Contrastive loss Triplet loss

0 O
@— @ =sdoseas possible Q_> - O

« Sampling from discrete class labels
« problem: large intra-class variability
» Need automatic ways for pair-wise labels

anchor negative positive

@ O @



Average precision loss

Images Embedding

®
K K Triplet
loss

The larger the batch the better
-~ no need to sample

[Revaud et al., ICCV'19]



Training data



Training data from SfM

/.4M images - 713 training 3D models

[Schonberger et al. CVPR'15]
[Radenovic et al. CVPR'16]



Training data from SfM

/.4M images - 713 training 3D models

[Schonberger et al. CVPR'15]
[Radenovic et al. CVPR'16]



Training data from SfM: hard negatives

Negative examples: images from different 3D models than the query
Hard negatives: closest negative examples to the query

the most similar ~ naive hard negatives diverse hard negatives

anchor ~ CNN descriptor top k by CNN top k: one per 3D model

[Radenovic et al.
PAMI'19]




Training data from SfM: hard positives

Positive examples: images that share 3D points with the query
Hard positives: positive examples not close enough to the query

random from
anchor top 1 by CNN top 1 byinliers  top k by inliers

[Radenovic et al.
PAMI'19]




Class labels + cleaning

Use classical computer vision to collect training data:
- Bag-of-Words and spatial verification
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[Gordo et al. IJCV'18]



Benchmarks



Instance retrieval (buildings, landmarks)

Manually constructed ground truth

Oxford buildings [Philbin et al., CVPR'07]
Paris [Philbin et al., CVPR'08]
Oxford/Paris revisited + 1M distractors
[Radenovic et al., CVPR'18]



http://cmp.felk.cvut.cz/revisitop/

Landmark recognition and retrieval

Google Landmarks Dataset
https://github.com/cvdfoundation/google-landmark

Crowd-sourced ground truth

« Recognition training set
4.1m images

200k landmarks

 Retrieval index set
762k images (1/3 decrease)
101k landmarks

« Test set
118k images
about 1% depicts landmarks




Post-processing on online time



Query expansion

Use NN information to get more confident query.

Initial
query /~~x

X known non-relevant documents
o known relevant documents

Revised

query

[Chum et al. ICCV'07]



Diffusion(random walk) on feature space

High dimensional feature is likely to have a manifold shape.

f' = oS + (1 —a)y.

Iterative manner with affinity graph

[Iscen et al. CVPR'19]



Performance comparison

MAP on R-Oxford hard protocol
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