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14
Monte Carlo Integration

In this chapter, we study Monte Carlo integration to evaluate com-
plex integral functions such as our rendering equation. In the next
chapter, we will discuss Monte Carlo based ray tracing techniques
that are specialized techniques for evaluating the rendering equa-
tions.

The rendering equation (Eq. 13.1) is a complex integration func-
tion. First of all, to compute a radiance for a ray starting from a
surface point x, we need to integrate all the incoming radiances that
arrive at x. Moreover, evaluating those incoming radiances requires
us to evaluate the same procedure in a recursive way. Since there
could be an infinite number of light paths starting from a light source
to the eye, it is almost impossible to find an analytic solution for the
rendering equation, except simple cases. Rendering equations can be high

dimensional, since we need to consider
motion blur and many other effects
with time and complex camera lens.

Second, the rendering equation can be high dimensional. The
rendering equation shown in Eq. 13.1 is two dimensional. In practice,
we need to support the motion blur for dynamic models and moving
cameras. Considering such motion blur, we need to integrate radi-
ance over time in each pixel, resulting in three dimensional rendering
equation. Furthermore, supporting realistic cameras requires two or
more additional dimensions on the equation. As a result, the equa-
tion for generating realistic images and video could be five or more
dimensional.

Due to these issues, high dimensionality and infinite number of
possible light paths, deriving analytic solutions and using determin-
istic approaches such as quadrature rules are impossible for virtually
all of rendering environments that we encounter. Monte Carlo inte-
gration was proposed to integrate such high-dimensional functions
based on random samples.

Overall, Monte Carlo (MC) integration is a numerical solution
to integrate high complex and high-dimensional function. Since
it uses sampling, it has stochastic errors, commonly quantified as
Mean Squared Error (MSE). Fortunately, MC integration is unbiased,



116 rendering

indicating that it gives us a correct solution with an infinite number
of samples on average.

14.1 MC Estimator

Suppose that we have the following integration, whose solution is I :

I =
∫ b

a
f (x)dx. (14.1)

The goal of MC integration is to take N different random samples,
xi , that follow the same probability density function, p(xi). We then
use the following estimator:

Î =
1
N ∑

i

f (xi)

p(xi)
. (14.2)

We now discuss how the MC estimator is good. One of measures
for this goal is Mean Squared Error (MSE), measuring the difference
between the estimated values, Ŷi , and observed, real values, Yi :

MSE(Ŷ) = E[(Ŷ − Y)2 ] =
1
N ∑

i
(Ŷi − Yi)

2 . (14.3)

MSE can be decomposed into bias and variances terms as the
following:

MSE(Ŷ) = E
[(

Ŷ − E[Ŷ ]
)2
]
+
(

E(Ŷ) − Y
)2 (14.4)

= Var(Ŷ) + Bias(Ŷ , Y)2 . (14.5)

The bias term Bias(Ŷ , Y) measures how much the average value
of the estimator Ŷ is away from its ground-truth value Y. On other
hand, the variance term Var(Ŷ) measures how the estimator values
are away from its average values. We would like to discuss bias and
variance of the MC estimator (Eq. 14.2).

Bias of the MC estimator. The MC estimator is unbiased, i.e., on
average, it returns the correct solution, as shown in below:

E[ Î] = E

[
1
N ∑

i

f (xi)

p(xi)

]

=
1
N

∫
∑

i

f (xi)

p(xi)
p(x)dx

=
1
N ∑

i

∫ f (x)
p(x)

p(x)dx,∵ xi samples have the same p(x)

=
N
N

∫
f (x)dx = I. (14.6)
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Variance of the MC estimator. To derive the variance of the MC
estimator, we utilize a few properties of variance. Based on those
properties, and Independent and Identically Distributed samples
(IID) of random samples, the variance of the MC estimator can be
derived as the following:

Var( Î) = Var(
1
N ∑

i

f (xi)

p(xi)
)

=
1

N2 Var(∑
i

f (xi)

p(xi)
)

=
1

N2 ∑
i

Var(
f (xi)

p(xi)
),∵ xi samples are independent from each other.

=
1

N2 NVar(
f (x)
p(x)

),∵ xi samples are from the same distribution.

=
1
N

Var(
f (x)
p(x)

) =
1
N

∫ ( f (x)
p(x)

− E
[

f (x)
p(x)

])2

p(x)dx. (14.7)

As can be in the above equations, the variance of the MC estimator
decreases as a function of 1

N , where N is the number of samples.

Simple experiments with MC estimators. Suppose that we would
like to compute the following, simple integration:

I =
∫ 1

0
4x3dx = 1. (14.8)

We know its ground truth value, 1, for the integration. We can now
study various properties of the MC estimator by comparing its result
against the ground truth. When we use the uniform sampling on the
integration domain, the MC estimator is defined as the following:

Î =
1
N

N

∑
i=1

4x3
i , (14.9)

where p(xi) = px = 1, since the sampling domain is [0, 1], and
the integration of uniform sampling on the domain has to be one,∫ 1

0 px = 1.
Fig. 14.1 shows how the MC estimator behaves as we have more

samples, N. As can be seen, MC estimators approach to its ground
truth value, as we have more samples. Furthermore, when we mea-
sure the mean and variance of different MC estimators that have
different random numbers given the same MC estimator equation
(Eq. 14.9), their mean and variance shows the expected behaviors;
its mean is same to the ground truth and the variance decreases as a
function of 1

N , respectively.
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Figure 14.1: The top two sub-
figures show the first and sec-
ond MC estimators of

∫ 1
0 4x3dx,

whose ground truth value is 1.
These MC estimators approach
to their ground-truth, as we
have more number of samples.
While these individual MC
estimators have up and down
depending on their randomly
generated values, their mean
and variance measured with
600 estimators show the ex-
pected behavior, as theoretically
predicted in Sec. 14.1. Its source
code, mc_int_ex.m, is available.

14.2 High Dimensions

Suppose that we have an integration with higher dimensions than
one:

I =
∫ ∫

f (x, y)dxdy. (14.10)

Even in this case, our MC estimator is extended straightforwardly to
handle such an two-dimensional integration (and other higher ones):

Î =
1
N ∑

f (xi, yi)

p(xi, yi)
, (14.11)

where we generate N random samples following a two dimensional
probability density function, p(x, y). We see how to generate samples
according to pdf in Sec. 14.4. This demonstrates that MC integration
supports well high dimensional integrations including the rendering
equation with many integration domains, e.g., image positions, time,
and lens parameters.

In addition, MC integration has the following characteristics:

• Simplicity. We can compute MC estimators based only on point
sampling. This results in very convenient and simple computation.

• Generality. As long as we can compute values at particular points
of functions under the integration, we can use MC estimations. As
a result, we can compute integrations of discontinuous functions,
high dimensional functions, etc.



monte carlo integration 119

Example. Suppose that we would like to compute the following
integration defined over a hemisphere:

I =
∫

Θ
f (Θ)dwΘ, (14.12)

=
∫ 2π

0

∫ π
2

0
f (θ, φ) sin θdθdφ. (14.13)

where Θ is the hemispherical coordinates, (θ, φ).
The MC estimator for the above integration can be defined as

follows:

Î =
1
N ∑

f (θi, φi) sin θ

p(θi, φi)
, (14.14)

where we generate (θi, φi) following p(θi, φi).
Now let’s get back to the irradiance example mentioned in

Sec. 12.2. The irradiance equation we discussed in the irradiance
example is to use Ls cos θ for f (θ, φ). In this case, the MC estimator of
Eq. 14.14 is transformed to:

Î =
1
N ∑

Ls cos θ sin θ

p(θi, φi)
. (14.15)

One can use different pdf p(θ, φ) for the MC estimator, but we can
use the following one:

p(θi, φi) =
cos θ sin θ

π
, (14.16)

where the integration of the pdf in the domain is one: i.e.,
∫ 2π

0

∫ π
2

0 cos θ sin θ =

1. Plugging the pdf into the estimator of Eq. 14.14, we get the follow-
ing:

Î =
π

N ∑ Ls. (14.17)

14.3 Importance Sampling

In this section, we see how different pdfs affect variance of our MC
estimators. As we see in Sec. 14.1, our MC estimator is unbiased
regardless of pdf employed, i.e., its mean value becomes the ground
truth of the integration. Variances, however, vary depending on
chosen pdf.

Let’s see the example integration, I =
∫ 1

0 4x3dx = 1, again. In the
following, we test three different pdfs and see their variance:

• p(x) = 1. As the simplest choice, we can use the uniform dis-
tribution on the domain. The variance of our MC estimator,
Î = 1

N ∑i 4x3
i is 36

28N ≈
1.285

N , according to the variance equation
(Eq. 14.7).
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• p(x) = x. The variance of this MC estimator, 1
N ∑i 4x2, is 14

12N ≈
1.666

N . Its variance is reduced from the above, uniform pdf!

• p(x) = 4x3. The shape of this pdf is same to the underlying
function under the integration. In this case, its variance turns out
to be zero.

The variance of an MC estimator goes
to zero, when the shape of its pdf is
same to the underlying function under
the integration. We, however, do not
know such a shape of the rendering
equation!

As demonstrated in the above examples, the variance of a pdf
decreases, as the distribution of a pdf gets closer to the underlying
function f (x). Actually, when the pdf p(x) is set to be f (x)∫

f (x)dx = f (x)
I ,

the ideal distribution, we get the lowest variance, zero. This can be
shown as the following:

Var( Î) =
1
N

∫
(

f (x)
p(x)

− I)2 p(x)dx

=
1
N

∫
(I − I)2 p(x)dx

= 0. (14.18)

Unfortunately, in some cases, we do not know the shape of the
function under the integration. Especially, this is the case for the
rendering equation. Nonetheless, the general idea is to generate more
samples on high values on the function, since this can reduce the
variance of our MC estimator, as demonstrated in aforementioned
examples. In the same reason, when the pdf is chosen badly, the
variance of our MC estimator can even go higher. The main idea of importance sampling

is to generate more samples on high
values on the function.

This is the main idea of importance sampling, i.e., generate more
samples on high values on the underlying function, resulting in a
lower variance.

Fortunately, we can intuitively know which regions we can get
high values on the rendering equation. For example, for the light
sources, we can get high radiance values, and we need to generate
rays toward such light sources to reduce the variance in our MC
estimators. Technical details on importance sampling are available in
Ch. 14.3.

14.4 Generating Samples

We can use any pdf for the MC estimator. In the case of the uni-
form distribution, we can use a random number generator, which
generates random numbers uniformly given a range.

The question that we would like to ask in this section is how we
can generate samples according to the pdf p(x) different from the
uniform pdf.

Fig. 14.2 shows a pdf and its cdf (cumulative distribution function)
in a discrete setting. Suppose that we would like to generate samples
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Figure 14.2: This figure shows
a pdf and its cdf. Using the
inverse cumulative distribution
function generates samples ac-
cording to the pdf by utilizing
its cdf.

according to the pdf. In this case, x1, x2, x3, x4 are four events, whose
probabilities are 0.2, 0.1, 0.2, 0.5, respectively. In other words, we
would like to generate those events with the pre-defined pdf. We can use an inverse cumulative

distribution function to generate
samples according to a pdf.

A simple method of generating samples according to the pdf is
to utilize its cdf (Fig. 14.2). This is known to be inverse cumulative
distribution function. In this method, we first generate a random
number α uniformly in the rnage of [0, 1). When the random number
α is in the range [∑i−1

0 pi, ∑i
0 pi), we return a sample of xi.

Let’s see the probability of generating a sample xi in this way to be
pi, as the following:

p(xi) = p(α ∈ [
i−1

∑
0

pi,
i

∑
0

pi])

= p(
i

∑
0

pi)− p(
i−1

∑
0

pi)

= pi, (14.19)

where p0 is set to be zero. So far, we see the discrete case, and we
now extend it to the continuous case.

Continuous case. Suppose that we have a pdf, p(x). Its cdf function,
FX(x), is defined as FX(x) = p(X < x) =

∫ x
−∞ p(x)dx. We then

generate a random number α uniformly in a range [0, 1]. A sample, y,
is generated as y = F−1

X (α).

Example for the diffuse emitter. Let’s consider the following inte-
gration of measuring the irradiance with the diffuse emitter and our
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sampling pdf:

I =
1
π

∫
Θ

dwΘ,

=
1
π

∫ 2π

0

∫ π
2

0
sin θ cos θdθdφ. (14.20)

p(θ, φ) =
sin θ cos θ

π
, (14.21)

where
∫ ∫

p(θ, φ)dθdφ = 1.
Our goal is to generate samples according to the chosen pdf. We

first compute its cdf, CDF(θ, φ), as the following:

CDF(θ, φ) =
∫ φ

0

∫ θ

0

sin θ cos θ

π
dθdφ

= (1− cos2 θ)
φ

2π
= F(θ)F(π), (14.22)

where F(θ) and F(π) are (1− cos2 θ) and φ
2π , respectively. Since the

pdf is two dimensional, we generate two random numbers, α and β.
We then utilize inverse function of those two separated functions of
F(θ) and F(φ):

θ = F−1(α) = cos−1
√

1− α,

φ = F−1(β) = 2πβ.

(14.23)

The aforementioned, the inverse CDF method assumes that we can
compute the inverse of the CDF. In some cases, we cannot compute
the inverse of CDFs, and thus cannot use the inverse CDF method. In
this case, we can use the rejection method.

Figure 14.3: In the rejection
method, we generate random
numbers and accept numbers
only when those numbers are
within the pdf p(x).

In the rejection method, we first generate two random numbers,
α and β. We accept β, only when α ≤ p(β) (Fig. 14.3). In the ex-
ample of Fig. 14.3, the ranges of α and β are [0, 1] and [a, b]. In this
approach, we can generate random numbers β according to the pdf
p(x) without using its cdf. Nonetheless, this approach can be ineffi-
cient, especially when we do not accept and thus reject samples. This
inefficiency occurs when the value of p(x) is smaller than the upper
bound, which we generate such random numbers up to. The upper
bound of α in our example is 1.
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