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Radiometry

One of important aspects of physically-based rendering is to simu-
late physical interactions between lights and materials in a correct
manner. To explain these physical interactions, we discuss various
physical models of light in this chapter. Most rendering effects that
we observe can be explained by a simple, geometric optics. Based on
this simple light model, we then explain radiometric quantities that
are important for computing colors. Finally, we explain basic material
models that are used for simulating the physical interaction with
lights.

12.1 Physics of Light

Understanding light has drawn major human efforts in physics and
resulted in many profound progress on optics and related fields.
Light or visible light is a type of electromagnetic radiations or waves
that we can see through our eyes. The most general physical model
is based on quantum physics and explains the duality of wave and
particle natures of light.

While the quantum physics explains the mysterious wave-particle
duality, it is rather impossible to simulate the quantum physics for
making our applications, i.e., games and movies, at the current com-
puting hardware. One of simpler light models is the wave model that
treats light like sound. Such wave characteristics become prominent,
when the wavelength of light is similar to sizes of interacting mate-
rials, and diffraction is one of such phenomena. For example, when
we see sides of CD, we can see rainbow-like color patterns, which are
created by small features of the CD surface.

The most commonly used light model used in computer graphics
so far is the geometric optics, which treats light propagation as
rays. This model assumes that object sizes are much bigger than
the wavelength of light, and thus wave characteristics disappear
mostly. This geometric optics can support reflection, refraction, etc.
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Figure 12.1: Solid angles in 2 D
and 3 D cases.

Many rendering methods based on ray tracing assumes the geometric
optics, and we also assume this model unless mentioned otherwise.

Our goal is then to measure the amount of energy that a particular
ray carries or that a particular location receives from. Along this
line, we commonly use a hemisphere, specifically, hemispherical
coordinates, to parameterize rays that can arrive at a particular
location in a surface. We discuss hemispherical coordinates before we
move on to studying radiometry.

Solid angles. We use the concept of solid angles for various inte-
gration on the hemisphere. The solid angle is used to measure how
much an objected located in 3 D space affects a point in a surface.
This metric is very useful for computing shadow and other factors
related to visibility. In the 2 D case (the left figure of Fig. 12.1), a
solid angle, Ω, of an object is measured by L

R , where L is the length
of the arc, where the object is projected to in the 2 D hemisphere (or
sphere). R is the radius of the sphere; we typically use a unit sphere,
where R = 1. The unit of the solid angle in the 2 D case is measured
by radians. The solid angle mapping to the full circle is 2π radians.

The solid angle in the 3 D case is computed by A
R2 , whose unit

is steradians (the right figure of Fig. 12.1). A indicates the area sub-
tended by the 3 D object in the hemisphere. For example, the full
sphere has 4π steradians.

Hemispherical coordinates. A hemisphere is two dimensional
surface and thus we can represent a point on the hemisphere with
two parameters such as latitude, θ, and longitude, ϕ (Fig. 12.2),
where θ ∈ [0, π

2 ] and ϕ ∈ [0, 2π]. Now let’s see how we can compute
the differential area, dA, on the hemisphere controlled by dφ and dθ.



radiometry 111

Figure 12.2: Hemispherical co-
ordinates (θ, ϕ). These images
from slides of Kavita Bala.

In infinitely small differential angles, we can treat that the area is
approximated by a rectangular shape, whose area can be computed
by multiplying its height and width. Its height is given by dθ. On the
other hand, its width varies depending on θ; its largest and minimum
occur at θ = π/2 and θ = 0, respectively.

To compute the width, we consider a virtual circle that touches
the rectangular shape of the hemisphere. Let x be the radius of the
ch ircle. The radius is then compute by sin θ = x

r , x = r sin θ, where
r is the radius of the hemisphere. The width is then computed by
applying the concept of the solid angle, and is r sin θdφ. We then have
the following differentials:

dA = (r sin θdφ)(rdθ). (12.1)

Based on this equation, we can easily derive differential solid angles,
dw:

dw =
dA
r2 (12.2)

= sin θdφdθ. (12.3)

We use these differential units to define the rendering equation
(Ch. 13.1).

12.2 Radiometry

In this section, we study various radiometric quantities that are im-
portant for rendering. Human perception on brightness and colors
depends on various factors such as the sensitivity of photoreceptor
cells in our eyes. Nonetheless, those photoreceptor cells receive pho-
tons and trigger biological signals. As a result, measuring photons,
i.e., energy, is the first step for performing the rendering process.

Power or flux. Power, P, is a total amount of energy consumed
per unit time, denoted by dW/dt, where W indicates watt. In our
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Figure 12.3: Radiance is mea-
sured per unit projected area,
dA⊥, while we receive the
energy on the surface A.

rendering context, it is the total amount of energy arriving at (or
passing through) a surface per unit time, and also called radiant flux.
Its unit is Watt, which is joules per second. For example, we say that
a light source emits 50 watts of radiant power or 20 watts of radiant
power is incident on a table.

Irradiance or radiosity. Irradiance is power or radiant flux arriving
at a surface per unit area, denoted by dW/dA with the unit of W/m2.
Radiant exitance is the radiant flux emited by a surface per unit area,
while radiosity is the radiant flux emitted, reflected, or transmitted
from a surface per unit area; that is why the radiosity algorithm has
its name (Ch. 11). For example, when we have a light source emitting
100W of area 0.1m2, we say that the radiant exitance of the light is
1000W/m2. Radiance is one of the most impor-

tant radiometric quantity used for
physically-based rendering.

Radiance. In terms of computing rendering images, computing the
radiance for a ray is the most important radiometric measure. The
radiance is radiant flux emitted, reflected, or received by a surface
per unit solid angle and per unit projected area, dA⊥, whose normal
is aligned with the center of the solid angle (Fig. 12.3):

L(x → Θ) =
d2P

dΘdA⊥
(12.4)

=
d2P

dΘdA cos θ
. (12.5)

cos θ is introduced for considering the projected area.

Diffuse emitter. Suppose that we have an ideal diffuse emitter that
emits the equal radiance, L, in any possible direction. Its irradiance
on a location is measured as the following:

E =
∫

Θ
L cos θdwΘ,

=
∫ 2π

0

∫ π
2

0
L cos θ sin θdθdφ =

∫ 2π

0
dφ

∫ π
2

0
L cos θ sin θdθ

= 2πL
1
2
= Lπ. (12.6)
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Fig: Invariance of Radiance
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Figure 12.4: A geometric config-
uration between two patches.

where Θ is the hemispherical coordinates, (θ, φ).

Invariance property of radiance. We intuitively know that radiance
moving from a location to another location along a straight line
does not vary as long as there are neither incoming nor exiting
energy along the line. We can prove this property by assuming
the conservation of the energy. For example, suppose a geometric
configuration shown in Fig. 12.4. Radiance does not vary along a straight

ray, as long as any additional energy
does not enter or exit along the ray.

We would like to show that the radiance from a location x to
another location y, L(x → y), is equal to the radiance that we observe
at the location y in the angle from the location x, L(y ← x). We then
have the following theorem:

Theorem 12.2.1. Under the energy conservation, L(x → y) = L(y ← x),
when there is nor incoming and or exiting energy on the line between x and
y.

Proof. By the definition of the radiance, we have the following equa-
tions:

L(x → y) =
d2P

dAx cos θxdwx→y
,

L(y← x) =
d2P

dAy cos θydwy→x
, (12.7)

where dwx→y is the solid angle of the differential unit area at y, dAy

observed from x, and dwy→x is defined similarly, i.e., the solid angle
of the differential unit area at x, dAx, observed from y. Since these
two equations have the same energy term, d2P, we have the following
equality:

L(x → y)dAx cos θxdwx→y = L(y← x)dAy cos θydwy→x. (12.8)

By utilizing the definition of the solid angle, we then have the follow-
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Figure 12.5: A configuration
setting for measuring the BRDF
is shown. Ψ and Θ are incom-
ing and outgoing directions,
while ψ is the angle between
the surface normal and Ψ.

ing equality:

L(x → y)dAx cos θx
dAy cos θy

r2 = L(y← x)dAy cos θy
dAx cos θx

r2 ,

L(x → y) = L(y← x). (12.9)

12.3 Materials

We discussed the Snell’s law to support the ideal specular (Sec. 10.1.
Phong illumination supports ideal diffuse and a certain class of
glossy materials (Ch. 8). However, some materials have complex
appearances that are not captured by those ideal specular, ideal
diffuse, and glossy materials. In this section, we discuss Bidirectional
Reflectance Distribution Function (BRDF) that covers a wide variety
of materials.

Our idea is to measure an appearance model of a material and to
use it within physically based rendering methods. Suppose the light
and camera settings shown in Fig. 12.5. We would like to measure
how the material reflects incoming radiance with a direction of Ψ
into outgoing radiance with a direction of Θ. As a result, BRDF,
fr(x, Ψ→ Θ), at a particular location x is a four dimensional function,
defined as the following:

fr(x, Ψ→ Θ) =
dL(x → Θ)

dE(x ← Ψ)
=

dL(x → Θ)

L(x ← Ψ) cos ψdwΨ
, (12.10)

where ψ is the angle between the normal of the surface at x and the
incoming direction Ψ, and dwΨ is the differential of the solid angle
for the light. The main reason why we use differential units, not
non-differential units, is that we want to cancel existing light energy
in addition to the light used for measuring the BRDF.
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Figure 12.6: These images show
interactions between the light
and materials that BRDF, BTDF,
and BSSRDF. These images are
excepted from Wiki.

The BRDF satisfies the following properties:

1. Reciprocity. Simply speaking, when we switch locations of the
camera and light, we still get the same BRDF. In other words,
fr(x, Ψ→ Θ) = fr(x, Θ→ Ψ).

2. Energy conservation.
∫

Θ fr(x, Ψ→ Θ) cos θdwΘ ≤ 1.

To measure a BRDF of a material, a measuring device, called
gonioreflectometer, is used. Unfortunately, measuring the BRDF takes
long time, since we have to scan different incoming and outgoing
angles. Computing BRDFs in an efficient manner is an active research
area.

Material appearance varies depending on wavelengths of lights.
To support such material appearance depending on wavelengths of
lights, we can measure BRDFs as a function of wavelengths, and use
a BRDF given a wavelengths of the light.

12.3.1 Other Distribution Functions

So far, we mainly considered BRDF. BRDF, however, cannot support
many other rendering effects such as subsurface scattering.

BRDF considered reflection at a particular point, x. For translucent
models, lights can pass through the surface and are reflected in the
other side of the surface. To capture such transmittance, BTDF (Bi-
direction Transmittance Distribution Function) is designed (Fig. 12.6).
Furthermore, light can be emitted from points other than the point
x that we receive the light. This phenomenon occurs as a result of
transmittance and reflection within a surface of translucent materials.
BSSRDF (Bidirectional Surface Scattering Reflection Distribution
Function) captures such complex phenomenon. Capturing and
rendering these complex appearance models is very important topics
and still an active research area.
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