SUNG-EUI YOON, KAIST

RENDERING

FREELY AVAILABLE ON THE INTERNET

Copyright © 2018 Sung-eui Yoon, KAIST
FREELY AVAILABLE ON THE INTERNET
http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

11
Radiosity

In the last chapter, we discussed ray tracing techniques. While ray
tracing techniques can support various rendering effects such as
shadow and transparency, their performance was identified too slow
to be used for interactive graphics applications. Some of issues of
ray tracing is that we generate many rays whenever we change view-
points. Furthermore, processing those rays take high computation
time, and they tend to have random access patterns on underly-
ing data structures (e.g., meshes and bounding volume hierarchy),
resulting in high cache misses and lower computational performance.
On the other hand, radiosity emerges as an alternative rendering
method that works for special cases with high performance *. While
radiosity is not designed for handling various rendering effects, it
has been widely used to complement other rendering techniques,
since radiosity shows high rendering performance of specific material
types such as diffuse materials. In other words, radiosiy as well
as ray tracing are two common building blocks of designing other
advanced rendering techniques, and we thus study this technique in
this chapter.

11.1 Two Assumptions
Radiosity has two main assumptions (Fig. 11.1):

¢ Diffuse material. We assume that the material type we handle for
radiosiy is diffuse or close to the diffuse materials. The ideal dif-
fuse material reflects incoming light into all the possible outgoing
directions with the equal amount of light energy, i.e., the same
radiance, which is one of radiometric quantity discussed in Sec. 12.
Thanks to this diffuse material assumption, any surface looks the
same and has the same amount of illumination level given the
view point. This in turn simplifies many computations.

*Cindy M. Goral, Kenneth E. Torrance,
Donald P. Greenberg, and Bennett
Battaile. Modelling the interaction

of light between diffuse surfaces. In
Computer Graphics (SIGGRAPH "84
Proceedings), volume 18, pages 212-22,
July 1984

100 RENDERING

¢ Constant radiance per each surface element. Take a look at a
particular surface (e.g., a wall or a desk in your room). The il-
lumination level typically varies smoothly depending on the
configuration between a point in the surface and position of light
sources. To support this phenomenon, radiosity treats that each
surface is decomposed into surface elements such as triangles.

It then assumes for simplicity that each surface element has a
single value related to the illumination level, especially, radiosity
value (Ch. 12). Simply speaking, radiosity is the total incoming (or
outgoing) energy arriving in a unit area in a surface.

We will see how these assumptions lead to a simple solution to the
rendering problem.

Relationship with finite element method (FEM). As you will see,
radiosity can generate realistic rendering results with an interactive
performance, while dealing only with diffuse materials and light
sources. This was excellent results, when radiosity was proposed
back at 1984. Furthermore, approaches and solution for radiosity
were novel at the graphics community at that time. Nonetheless,
those techniques were originally introduced for simulating heat
transfers and have been well established as Finite Element Methods
(FEM). FEM was realizing its potential benefits around 1960s and 7os,
and was applied even to a totally different problem, physically based
rendering. This is a very encouraging story to us. By studying and
adopting recently developing techniques into our own problem, we
can design very creative techniques in our own field!

Figure 11.1: Radiosity has the
diffuse material assumption
(top) and constant illumination
per surface element (bottom).

RADIOSITY 101

Figure 11.2: The radiosity of a
patch is computed by the sum
of the self-emitted radiosity
from itself and the radiosity
reflected and received from

other patches.
= +

Self-emitted Reflected
radiosity radiosity

Radiosity

11.2 Radiosity Equation

An input scene to radiosity is commonly composed of triangles.
We first subdivide the scene into smaller triangles such that our
assumption of the constant radiance per each subdivided triangle
is valid. Suppose that there are n different surface elements. We
use B; to denote radiosity of a patch i. Some of such patches can be
light sources and thus emit some energy. Since we also assume the
light sources to be diffuse emitters, we also use radiosity for such
self-emitting patches, and their emitting energy is denoted by B, ;.

Intuitively speaking, the radiosity of the patch i is the sum of
the self-emitting energy from the patch itself, B, ;, and the energy
reflected from the patch i by receiving energy from all the other
patches (Fig. 11.2. We can then model the interaction between the
patch i and different patches as the following:

B = Bei+pi) BF(i = j), (11.1)
j

where j is another index to access all the surface elements in the
scene, F(i — j) is a form factor that describes how much the energy
from the patch i arrives at another patch j, and p; is a reflectivity of
the patch i.

B, ; and p; are input parameters to the equation and given by
a scene designer. The form factor is a term that we can compute
depending on the geometric configuration between two patches i
and j. The form factor can be understood by the area integration
of the rendering equation, which is more general than the radiosity
equation. This is discussed in Sec. 13.2. As a result, the unknown
terms of the equation is the radiosity B; of n different patches. Our
goal is then to compute such unknown terms. We discuss them in
the next section, followed by the overall algorithm of the radiosity

102 RENDERING

rendering method.

11.3 Radiosity Algorithm

Given the radiosity equation (Eq. 11.1), the unknown term is the
radiosity, B;, per each patch, resulting in n different unknown radios-
ity values for n patches. Since we can setup n different equation for
each patch based on the radiosity equation, overall we have n differ-
ent equations and unknowns. When we represent such 7 different
equations, we have the following matrix representation:

1-— plF(l — 1) *plP(l — 2) . *plP(l — T’l) By Be,l
—pnF(n —1) —pyF(n—2) ... 1—p,F(n—n)| |By Ben
(11.2)

The above matrix has the form of AX = B, where X = [By...B,|T isa
1 by n matrix containing unknowns.

To compute the unknown X, we can apply many matrix inversion
algorithms including Gaussian elimination that has O(n®) time

complexity 2. This approach, however, can be very expensive to 2 William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T.

. . Vetterling. Numerical Recipes in C. Cam-
elements can be hundreds of thousands in practice. bridge University Press, Cambridge,

be used for interactive applications, since the number of surface

Instead of using exact approaches of computing the linear equa- England, 2nd edition, 1993
tions, we can use other numerical approaches such as Jacobi and
Gauss-Seidel iteration methods. Jacobi iteration works as the follow-

ing:

¢ Initial values. Start with initial guesses on radiosity values to
surface patches. For example, we can use the direct illumination
results using Phong illumination considering the light sources as
the initial values for surface patches.

¢ Update step. We plug those values, i.e., old values, into the right
term of the radiosity equation (Eq. 11.1), and get new values on B;.
We perform this procedure to all the other patches.

* Repeat until converge. We repeat the update step until radiosity
values converge.

The Jacobi iteration method has been studied well in numerical
analysis, and its properties related to convergence have been well

known 3. 3 William H. Press, Brian P. Flannery,
Saul A. Teukolsky, and William T.

. Vetterling. Numerical Recipes in C. Cam-
Effects of numerical iteration. Instead, we discuss how it works in bridge University Press, Cambridge,

the context of rendering. While performing the update step of the England, 2nd edition, 1993
One numerical iteration simulates one
bounce of the light energy from a patch
to another patch.

RADIOSITY 103

Figure 11.3: This shows a se-
. ‘ quence of images computed
= = = by different updates, i.e., light
bounces, during the radiosity
. - - iteration process. This is the

courtesy of the wikipedia.

Jacobi iteration, we compute a new radiosity value for each patch

from old values. In this process, we compute the new radiosity value
received and reflected from other patches. Intuitively, the update
step supports one bounce of the light energy from a patch to another
patch.

Fig. 11.3 visualizes how radiosity values change as we have differ-
ent number of update steps, i.e., passes. While only surface elements
that are directly visible from the light source are lit in the first pass,
other surface elements get brighter as we perform multiple update
steps and thus multiple bounces. In a way, this also visualizes how
the incoming light energy is distributed across the scene. In the end,
we see only the converged result, which is the equilibrium state of
the light and material interaction described in the radiosity equation.

Overall algorithm. In summary, we subdivide triangles of the input
scene into smaller surface elements, i.e., patches. We then compute
radiosity values per each patch by solving the linear equations given
by the radiosity equation. For static models, we perform this process
only a single time. At runtime, when a viewer changes a view point,
we then project those triangles whose color. This projection process Radiosity is commonly accelerated by
is efficiently performed by using the rasterization process in GPUs. adopting the rasterization method
So far, we did not consider view points given by users while
computing radiosity values. This is unnecessary, because we do
not need to consider view-dependent information for radiosity
computation process; note that radiosity algorithm assumes the
diffuse materials and emitters and thus we get the same radiance
value for any view directions. This is one of the main features of
the radiosity algorithm, leading to its strength and weakness of the
method.
The basic radiosity method does not
Drawbacks of the basic radiosity method. The main benefit of the support glossy materials.
basic radiosity method is that we can re-use the pre-computed radios-
ity values, even though the user changes the viewpoint. Nonetheless,
it has also drawbacks. First of all, the radiosity assumes different
materials and emitters, while various scenes have other materials
such as glossy materials. Also, when we have dynamic models, we

104 RENDERING

cannot re-use pre-computed radiosity values and thus re-compute
them.

11.4 Light Path Expressions

The radiosity method does support light reflections between diffuse
materials, but does not support interactions between glossy mate-
rials. Can we represent such light paths that the radiosity method

supports? Regular expressions are used to denote

Heckbert proposed to use the regular expression to characterize different types of light paths.

light paths 4. This approach considers light paths starting from the 4+Paul S. Heckbert. Adaptive radiosity
textures for bidirectional ray tracing. In

. ; Forest Baskett, editor, Computer Graphics
materials are denoted as D, S, and G, respectively. We also adopt (SIGGRAPH '90 Proceedings), volume 24,

eye, noted E, to the light, denoted, L. Diffuse, specular, and glossy

various operations of regular expressions such as | (or), * (zero or pages 145-154, August 1990
more), and + (one or more).
The light paths that radiosity method are then characterized by
LD*E. On the other hand, the classic ray tracing method (Ch. 10)
supports L(DS*)E, since it generates secondary rays when a ray hits
specular or refractive objects.

	II Physically-based Rendering
	Available Tools
	Ray Tracing
	Basic algorithm
	Intersection Tests
	Bounding Volume Hierarchy
	Visibility Algorithms

