SUNG-EUI YOON, KAIST

RENDERING

FREELY AVAILABLE ON THE INTERNET

Copyright © 2018 Sung-eui Yoon, KAIST
FREELY AVAILABLE ON THE INTERNET
http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

Part 11

Physically-based Rendering

In Part I, we discussed rasterization techniques. While the rateriza-

tion technique provides the efficient performance based on rendering
pipeline utilizing modern GPUs, its fundamental approach is not
based on the physical interaction between lights and materials. An-
other large stream of rendering methods are based on such physical
interactions and thus are known as physically-based rendering.

In this part, we discuss two different approaches, ray tracing
and radiosity, of physically based rendering methods. Ray tracing
and radiosity are two main building blocks of many interactive or
physically based rendering techniques. We first discuss ray tracing in
this chapter, followed by radiosity (Ch. 11. We then study radiometric
quantities (Ch. 12) to measure different energy terms to describe the
physical interaction, known as the rendering equation (Ch. 13.1).

The rendering equation is a high dimensional integral problem,
and thus its analytic solutions in many cases are not available. As an
effective solution to solving the equation, we study the Monte Carlo
technique, a numerical approach in Ch. 14, and its integration with
ray tracing in Ch. 15. In many practical problems, such Monte Carlo
approaches are slow to converge to noise-free images. We therefore
study importance sampling techniques in Ch. 14.3.

9.6 Auvailable Tools

Physically based rendering has been studied for many decades, and
many useful resources are available. Some of them are listed here:

¢ Physically Based Rendering: From Theory to Implementation *.
This book also known as pbrt comes with concepts with their
actual implementations. As a result, readers can get understand-
ing on those concepts and actual implementation that they can
play with. Since this book discusses such implementation, we
strongly recommend you to play with their source codes, which
are available at github.

e Embree 2 and Optix 3. Embree and Optix are interactive ray trac-
ing kernels that run on CPUs and GPUs, respectively. While
source codes of Optix are unavailable, Embree comes with their
source codes.

* Instant Radiosity. Instant radiosiy is widely used in many games,
thanks to its high quality rendering results with reasonably fast
performance. Unfortunately due to its importance in recent game
industry, mature library or open source projects are not available.
One of useful open source projects are from my graphics lab. It is
available at: http://sglab.kaist.ac.kr/~sungeui/ICG/student_
presentations.html.

87

*Matt Pharr and Greg Humphreys.
Physically Based Rendering, Second
Edition: From Theory To Implementation.
Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2nd edition, 2010b.
ISBN 0123750792, 9780123750792

2 Ingo Wald, Sven Woop, Carsten
Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

3 Steven G. Parker, James Bigler, An-
dreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAl-
lister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix:
a general purpose ray tracing engine.
ACM Trans. Graph., 29:66:1-66:13, 2010

http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html
http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html

10
Ray Tracing

Ray casting and tracing techniques have been introduced late 70’s
and early 80’s to the computer graphics field as rendering techniques
for achieving high-quality images.

Ray casting * shoots a ray from the camera origin to a pixel and
compute the first intersection point between the ray and objects in
the scene. Ray casting then computes the color from the intersection
point and use it as the color of the pixel. It computes a direct illu-
mination that has one bounce from the light to the eye. Its result is
same to those of the basic rasterization considering only the direct
illumination.

Ray tracing ? is an recursive version of the ray casting. In other
words, once we have the intersection between the initial ray and
objects, ray tracing generates another ray or rays to simulate the in-
teraction between and the light and objects. A ray can be considered
as a photon traveling in a straight line, and by simulating many rays

in a physically correct way, we can achieve physically correct images.

While the algorithm is extremely simple, we can support various
effects by generating different rays (Fig. 10.1).

10.1 Basic algorithm

The basic ray tracing algorithm is very simple, as shown in Algo-
rithm 1. We first generate a ray from the eye to the scene. While a
photon travels from a light source, we typically perform ray tracing
in backward from the eye (Fig. 10.2). We then identify the first inter-
section point between the ray and the scene. This has been studied
well, especially around the early stage of developing this technique.
At this point, we simply assume that we can compute such intersec-
tion points and this is discussed in Sec. 10.2.

Suppose that we identify such an intersection point between the
ray and the scene. We can then perform various shading operations
based on the Phong illumination (Sec. 8.3). To see whether the point

* Arthur Appel. Some techniques for
shading machine renderings of solids. In
AFIPS 1968 Spring Joint Computer Conf.,
volume 32, pages 37—45, 1968

> Turner Whitted. An improved
illumination model for shaded display.
Commun. ACM, 23(6):343—349, 1980

Ray tracing simulates how a photon
interacts with objects.

90 RENDERING

Algorithm 1 Basic ray tracing

Trace rays from the eye into the scene (backward ray tracing).
Identify the first intersection point and shade with it.
Generate additional, secondary rays needed for shading.
Generate ray for reflections.
Generate ray for refraction and transparency.
Generate ray for shadows.

is under the shadow or not, we simple generate another ray, called
shadow ray, to the light source (the bottom image of Fig. 10.2).

Reflection and refractions are handled in a similar manner by
generating another secondary rays (Fig. 10.3). The main question
that we need to address here is how we can construct the secondary
rays for supporting reflection and refraction. For the mirror-like
objects, we can apply the perfect-specular reflection and compute
the reflection direction for the reflection ray, where the incoming
angle is same to the outgoing angle. In other words, the origin of
the reflection ray, R, is set to the hit point of the prior ray, and the
direction of R is set as the reflection direction. Its exact equation is
shown in Sec. 8.

Most objects in practice do not support such perfect reflection. For
simple cases such as rays bending in glasses or water, we apply the
Snell’s law to compute the outgoing angle for refraction. The Snell’s

Figure 10.1: One of early im-
ages generated by ray tracing,
i.e., Whitted style ray tracing.
The image has reflection, re-
fraction, and shadow effects.
The image is excerpted from its
original paper.

law is described as follows:

sinfh _ n

. = 10.1
sinf, ny’ (10.1)

where 0; and 6, are incoming and outgoing angles given rays at

the interface between two different objects (Fig. 10.4). 11 and n;

are refractive indices of those two objects. The refractive index of a
material (e.g., water) is defined as , where c is the velocity of the
light in vacuum, while v is the speed of the light in that material. As
a result, refractive indices of different materials are measured and can
be used for simulating such materials within ray tracing.

Many objects used in practice consist of many different materials.
As a result, the Snell’s law designed for isotropic media may not be
appropriate for such cases. For general cases, BRDF and BSSRDF
have been proposed and are discussed in Ch. 12.

Physically based rendering techniques adopt many physical
laws, as exemplified by adopting the Snell’s law for computing
refraction rays. This is one of main difference between rasterization
and physically based rendering methods.

Note that in rasterization techniques, to handle shadow, reflection,
refraction, and many other rendering effects, we commonly generate
some maps (e.g., shadow maps) accommodating such effects. As
a result, handling texture mapping efficiently is one of key compo-
nents for many rasterization techniques running on GPUs. On the
other hand, ray tracing generates various rays for such effects, and
handling rays efficiently is one of key components of ray tracing.

RAY TRACING O1

Figure 10.2: We generate a ray,
primary ray, from the eye (top).
To see whether the intersec-
tion point is in the shadow or
not, we generate another ray,
shadow ray, to the light source
(bottom). These images are
created by using 3ds Max.

For various effects, ray tracing generate
different types of rays, while rasteriza-
tion adopts different types of texture
maps.

92 RENDERING

Figure 10.3: Handling reflection
and refraction by generating
secondary rays.

10.2 Intersection Tests

Performing intersection tests is one of main operations of ray tracing.

Furthermore, they tend to become the main bottleneck of ray tracing

and thus have been optimized for a few decades. In this section, we

discuss basic ways of computing intersection tests between a ray and

a few simple representations of a model. Implicit forms of objects are commonly
Any points, p(t), in a ray parameterized by a parameter f can be used for intersection tests.

represented as follows:
p(t) =o+1td, (10.2)

where 0 and d are the origin and direction of the ray, respectively. A
common way of approaching this problem is to first define an object
in an implicit mathematical form, f(p) = 0, where p is any point
on the object. We then compute the intersection point, ¢;, satisfying
fp(ti)) = 0.

We now look at a specific case of computing an intersection point
between a ray and a plane. A well known implicit form of a plane is:

fip—d=0, (10.3)

Surface
normal

Interface

where i is a normalized normal vector of the plane and d is the
distance from the origin to the plane. This implicit form of the plane
equation is also known as the Hessian normal form 3.

By plugging the ray equation into the implicit of the plane equa-
tion, we get:

filo+td)—d =0
d —io

i-d

!

=

(10.4)

We now discuss a ray intersection method against triangles, which
are one of common representations of objects in computer graph-
ics. There are many different ways of computing the intersection
point with triangles. We approach the problem based on barycentric
coordinates of points with a triangle.

Barycentric coordinates are computed based on non-orthogonal
bases unlike the Cartesian coordinate system, which uses orthogonal
bases such as X, Y, and Z-axis. Suppose that p is an intersection point
between a ray and a triangle consisting of three vertices, vy, v1, v
(Fig. 10.5). We can represent the point p as the following:

p =vo + B(v1 —vg) + v(v2 — vp)
=(1—B—7)vo + Bo1 + 702
=avy + o1 + Y02, (10.5)

where we use « to denote 1 — 8 — 7. We can then see a constraint that
« + B+ v =1, indicating that we have two degrees-of-freedom, while
there are three parameters.

Let’s see in what ranges of these parameters the point p is inside
the triangle. Consider edges along two vectors vy — v; and v; — vy
(Fig. 10.5). Along those edges, f and -y should be in [0,1], when the

RAY TRACING 93

Figure 10.4: How a ray bends
at an interface between simple
objects, specifically, isotropic
media such as water, air, and
glass, is described by the Snell’s
law.

3 E. Weisstein. From mathworld-a
wolfram web resource. URL http:
//mathworld.wolfram.com

Barycentric coordinates are computed
based on non-orthogonal bases.

http://mathworld.wolfram.com
http://mathworld.wolfram.com

94 RENDERING

V2 s
Ray 14
p
[== >
Vo p \Z

point is inside the triangle. Additionally, when we consider the other

edge along the vector of v; — v, points on the edge satisfy v =1 — *.

When we plug the equation into the definition of a, we see «a to be
zero. On the other hand, on the point of vy, f and <y should be zero,
and thus « to be one. As a result, we have the following property:

0<uwpB,v<1, (10.6)

where these three coordinates are barycentric coordinates and o =
1-B—1.

There are many different ways of computing barycentric coordi-
nates given points defined in the Cartesian coordinate system. An
intuitive way is to associate barycentric coordinates with areas of
sub-triangles of the triangle; as a result, barycentric coordinates are
also known as area coordinates. For example, B associated with vy is
equal to the ratio of the area of Apvyv; to that of Avgvyvs.

Once we represent the intersection point p within the triangle
with the barycentric coordinates, our goal is to find t of the ray that
intersects with the triangle, denoted as the following:

0+td = (1—=B—7)vy + o1 + Y02, (10.7)

where unknown variables are t, B, y. Since we have three different
equations with X, Y, and Z coordinates of vertices and the ray, we can
compute those three unknowns.

10.3 Bounding Volume Hierarchy

We have discussed how to perform intersection tests between a ray
and implicit equations representing planes and triangles. Common
models used in games and movies have thousands of or millions of
triangles. A naive approach of computing the first intersection point
between a ray and those triangles is to linearly scan those triangles
and test the ray-triangle intersection tests. It, however, has a linear

Figure 10.5: In the barycentric
coordinate system, we repre-
sent the point p with g and

v coordinates with two non-
orthogonal basis vectors, v1 — vy
and U — 09p.

4+ When we consider a 2 D space whose
basis vectors map to canonical vectors
(e.g., X and Y axises) with g and -y
coordinates, one can easily show that
the relationship 7y = 1 — B is satisfied on
the edge of v, — v.

Barycentric coordinates are also known
as area coordinates, since they map to
areas of sub-triangles associated with
vertices.

Axis-aligned Oriented
box box

Sphere k-DOPs

time complexity as a function of the number of triangles, and thus
can take an excessive amount of computation time.

Many acceleration techniques have been proposed to reduce the
time spent on ray intersection tests. Some of important techniques
include optimized ray-triangle intersection tests using Barycentric
coordinates 5. In this section, we discuss an hierarchical acceleration
technique that can improve the linear time complexity of the naive
linear scan method.

Two hierarchical techniques have been widely used for accelerat-
ing the performance of ray tracing. They are kd-trees and bounding
volume hierarchies (BVHs). kd-trees are constructed by partitioning
the space of a scene and thus are classified as spatial partitioning
trees. On the other hand, BVHs are constructed by partitioning
underlying primitives (e.g., triangles) and thus known as object par-
titioning trees. They have been demonstrated to work well in most
cases ©. We focus on explaining BVHs in this chapter thanks to its
simplicity and wide acceptance in related fields such as collision
detection.

10.3.1 Bounding Volumes

We first discuss bounding volumes (BVs). A BV is an object that
encloses triangles. Also, the BV should be efficient for performing
an intersection test between a ray and the BV. Given this constraint,
simple geometric objects have been proposed. BVs commonly used

in practice are sphere, Axis-Aligned Bounding Box (AABB), Oriented

Bounding Box (OBB), k-DOPs (Discrete Oriented Polytopes), etc.
(Fig. 10.6).

Spheres and AABBs are fast for checking intersection tests against
a ray. Furthermore, constructing these BVs can be done quite quickly.

For example, to compute a AABB from a soup of triangles, we just
need to traverse those triangles and compute mim and max values
of x, y, and z coordinates of triangles. We then compute the AABB

RAY TRACING 95

Figure 10.6: This figure shows
different types of Bounding
Volumes (BVs).

5 Tomas Moller and Ben Trumbore.
Fast, minimum storage ray-triangle
intersection. |. Graph. Tools, 1997

Bounding volume hierarchies are sim-
ple to use and have been widly adopted
in related applications including colli-
sion detection.

¢ Ingo Wald, Sven Woop, Carsten
Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

96 RENDERING

v

Computed AABBs

47

N\
Zm

A BVH

out of those computed min and max values. Since many man made
artifacts have box-like shapes, AABB works well for those types.
Nonetheless, spheres and AABBs may be too lose BVs, especially
when the underlying object is not aligned into such canonical direc-
tions or is elongated along a non-canonical direction (Fig. 10.6).

On the other hand, OBBs and k-DOPs tend to provide tighter
bounding, but to require more complex and thus slow intersection
tests. Given these trade-offs, an overhead of computing a BV, tight-
ness of bounding, and time spent on intersection tests between a
ray and a BV, it is hard to say which BV shows the best performance
among all those BVs. Nonetheless, AABBs work reasonably well in
models used for games and CAD industry, thanks to its simplicity
and reasonable bounding power on those models.

10.3.2 Construction

Let’s think about how we can construct a bounding volume hierarchy
out of triangles. A simple approach is a top-down construction
method, where we partition the input triangles into two sets in

a recursive way, resulting in a binary tree. For simplicity, we use
AABBs as BVs.

We first construct a root node with its AABB containing all the
input triangles. We then partition those triangles into left and right
child nodes. To partition those triangles associated with a current
node, a simple method is to use a 2 D plane that partitions the
longest edge of the current AABB of the node. Once we compute
triangle sets for two child nodes, we recursively perform the process
until each node has a fixed number of triangles (e.g., 1 or 2).

In the aforementioned method, we explained a simple partitioning
method. More advanced techniques have been proposed including
optimization techniques with Surface Area Heuristic (SAH) 7. The
SAH method estimates the probability that a BV intersects with
random rays, and we can estimate the quality of a computed BVH. It

Figure 10.7: This figure shows a
BVH with its nodes and AABBs
given a model consisting of
three triangles. Note that two
child AABBs have a spatial
overlap, while their nodes have
different triangles. As a result,
BVHs are classified into an
object partitioning tree.

A single BV type is not always better
than others, but AABBs work reason-
ably well and are easy to use.

7 C. Lauterbach, S.-E. Yoon, D. Tuft, and
D. Manocha. RT-DEFORM!: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39—46, 2006

has been demonstrated that this kind of optimizations can be slower
than the simple method, but can show shorter traversal time spent on
performing ray-BVH intersection tests.

Dynamic models. Many applications (e.g., games) use dynamic

or animated models. As a result, it is important to build or update
BVHs of models as they are changing. This is one of main benefits
of using BVHs for ray tracing, since it is easy to update the BVH of a
model, as the model changes its positions or is animated.

One of the most simple methods is to refit the existing BVH in
a bottom-up manner, as the model is changing. Each leaf node is
associated with a few triangles. As they change their positions, we re-
compute the min and max values of the node and update the AABB
of the node. We then merge those re-computed AABBs of two child
nodes for their parent node by traversing the BVH in a bottom-up
manner. This process has the linear time complexity in terms of the
number of triangle. Nonetheless, this refitting approach can result in
a poor quality, when the underlying objects deform significantly.

To address those problems, many techniques have been proposed.
Some of them is to build BVHs from scratch every frame by using
many cores & and to selectively identify a sub-BVH with poor quality
and rebuild only those regions, known as selective restructuring 9. At
an extreme case, the topology of models can change due to fracturing
of models. BVH construction methods even for fracturing cases have
been proposed °.

10.3.3 Traversing a BVH

Once we build a BVH, we now traverse the BVH for ray-triangle
intersection tests. Since an AABB BVH provides AABBs, bounding
boxes, on the scene in a hierarchical manner, we traverse the BVH in
the hierarchical manner.

Given a ray, we first perform an intersection test between the ray
and the AABB of the root node. If there is no intersection, it guar-
antees that there are no intersections between the ray and triangles
contained in the AABB. As a result, we skip traversing its sub-tree. If
there is an intersection, we traverse its sub-trees by accessing its two
child nodes. Among two nodes, it is more desirable to access a node
which is located closer to the ray origin, since we aim to identify the
first intersection point along the ray starting from the ray origin.

Suppose that we decide to access the left node first. We then store
the right node in a stack to process it later. We continue this process
until we reach a leaf node containing primitives (e.g., triangles).
Once we reach a leaf node, we perform ray-triangle intersection

RAY TRACING 97

BVHs suits well for dynamic models,
since it can be refitted or re-computed
from scratch efficiently.

8 C. Lauterbach, M. Garland, S. Sen-
gupta, D. Luebke, and D. Manocha. Fast
bvh construction on gpus. Computer
Graphics Forum (EG), 28(2):375-384, 2009
9 Sungeui Yoon, Sean Curtis, and
Dinesh Manocha. Ray tracing dynamic
scenes using selective restructuring.
Eurographics Symp. on Rendering, pages
73-84, 2007

*° Jae-Pil Heo, Joon-Kyung Seong,
DukSu Kim, Miguel A. Otaduy, Jeong-
Mo Hong, Min Tang, and Sung-Eui
Yoon. FASTCD: Fracturing-aware
stable collision detection. In SCA "10:
Proceedings of the 2010 ACM SIGGRAPH
/ Eurographics Symposium on Computer
Animation, 2010

98 RENDERING

tests for identifying an intersection point. If it is guaranteed that the

intersection point is the closest to the ray origin, we terminate the
process. Otherwise, we contribute to traverse the tree, by fetching
and accessing nodes in the stack.

Many types of BVHs do not provide a strict ordering between two

child nodes given a ray. This characteristic can result in traversing

many parts of BVHs, leading to lower performance. Fortunately, this

issue has been studied, and improvements such as identifying near
and far child nodes have been proposed **.

10.4 Visibility Algorithms

In this chapter, we discussed different aspects of ray tracing. At

a higher level, ray casting, a module of ray tracing, is one type of
visibility algorithms, since it essentially tells us whether we can see
a triangle or not given a ray. In this section, we would like to briefly
discuss other visibility algorithms.

The Z-buffer method, an fundamental technique for rasteriza-
tion (Part I), is another visibility algorithm. The Z-buffer method is
an image-space method, which identifies a visible triangle at each
pixel of an image buffer by considering the depth value, i.e., Z val-
ues of fragments of triangles (Ch. 7.4). Many different visibility or
hidden-surface removal techniques have been proposed. Old, but
well-known techniques have been discussed in a famous survey 2.
Interestingly, the Z-buffer method was mentioned as a brute-force
method in the survey, because of its high memory requirement.
Nonetheless, it has been widely adopted and used for many graph-
ics applications, thanks to its simple method, resulting in an easy
adoption in GPUs.

Compared with the Z-buffer, ray casting and ray tracing is much
slower, since it uses a hierarchical data structure, and has many
incoherent memory access. Ray casting based approaches, however,

become more widely accepted in movies and games, because modern

GPUs allow to support such complicated operations, and many
algorithmic advances such as ray beams utilizing coherence have
been prosed. It is hard to predict future exactly, but ray casting

based approaches will be supported more and can be adopted as an

interactive solution at some point in future.

11 C. Lauterbach, S.-E. Yoon, D. Tuft, and
D. Manocha. RT-DEFORM: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39—46, 2006

While the Z-buffer method was con-
sidered as a brute-force method, it is
the de-factor standard in the rasteriza-
tion method thanks to its adoption in
modern GPU architectures.

> Ivan E. Sutherland, Robert F. Sproull,
and Robert A. Schumacker. A characteri-
zation of ten hidden-surface algorithms.
ACM Comput. Surv., 6(1):1-55, 1974

	Preface
	Introduction
	Rendering Techniques
	Related Materials
	Common Q & A

	I Rasterization
	Related Materials
	Rendering Pipeline
	Classic Rendering Pipeline
	Modern Rendering Pipeline
	OpenGL and Other Tools

	Transformation
	Viewport Transformation
	2D Transformation
	Affine Frame
	Local and Global Frames
	3D Modeling Transformation

	Camera Setting
	Viewing Transformation
	Projection

	Interaction
	Loading Objects
	Selection
	Virtual Trackball
	Transformation Hierarchy

	Clipping and Culling
	Culling
	Inside/Outside Tests
	View-Frustum and Back-Face Culling
	Clipping
	Clipping in the Pipeline
	Common Questions

	Rasterization
	Primitive Rasterization
	Rasterization with Edge Equations
	Interpolation Parameters
	Z-Buffering

	Illumination and Shading
	How can we see objects?
	Bi-Directional Reflectance Distribution Function
	Phong Illumination Model
	Shading
	Common Questions

	Texture
	Texture Mapping
	Oversampling of Textures
	Under-sampling of Textures
	Approximating Lights
	Approximating Geometry

	II Physically-based Rendering
	Available Tools
	Ray Tracing
	Basic algorithm
	Intersection Tests
	Bounding Volume Hierarchy
	Visibility Algorithms

	Radiosity
	Two Assumptions
	Radiosity Equation
	Radiosity Algorithm
	Light Path Expressions

	Radiometry
	Physics of Light
	Radiometry
	Materials

	Rendering Equation
	Rendering Equation
	Area Formulation

	Monte Carlo Integration
	MC Estimator
	High Dimensions
	Importance Sampling
	Generating Samples

	Monte Carlo Ray Tracing
	Path Tracing
	MC Estimator to Rendering Equation
	Quasi-Monte Carlo Sampling

	Importance Sampling
	Direct Illumination
	Multiple Importance Sampling

	Conclusion
	Bibliography

