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13
Rendering Equation

In this chapter, we discuss the rendering equation that mathemati-
cally explains how the light is reflected given incoming lights. The
radiosity equation (Ch. 11) is a simplified model of this rendering
equation assuming diffuse reflectors and emitters.

Nonetheless, the rendering equation does not explain all the light
and material interactions. Some aspects that the rendering equation
does not capture include subsurface scattering and transmissions.

13.1 Rendering Equation

The rendering equation explains how the light interacts with materi-
als. In particular, it assumes geometric optics (Sec. 12.1) and the light
and material interaction in an equilibrium status.

The inputs to the rendering equation are scene geometry, light
information, material appearance information (e.g., BRDF), and view-
ing information. The output of the rendering equation is radiance
values transferred, i.e., reflected and emitted, from a location to a
particular direction. Based on those radiance values for primary
rays generated from the camera location, we can compute the final
rendered image.

Suppose that we want to compute the radiance, L(x → Θ), from a
location x in the direction of Θ 1. To compute the radiance, we need 1 For simplicity, we use a vector Θ for

representing a direction based on the
hemispherical coordinates.

to sum the emitted radiance, Le(x → Θ), and the reflected radiance,
Lr(x → Θ) (Fig. 13.1). The emitted radiance can be easily given by
the input light configurations. To compute the reflected radiance, we
need to consider incoming radiance to the location x and the BRDF
of the object at the location x. The incoming radiance can come to x
in any possible directions, and thus we introduce an integration with
the hemispherical coordinates. In other words, the reflected radiance
is computed as the following:

Lr(x → Θ) =
∫

Ψ
L(x ← Ψ) fr(x, Ψ→ Θ) cos θxdwΨ, (13.1)
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Figure 13.1: The radiance,
L(x → Θ), is computed by
adding the emitted radiance,
Le(x → Θ), and the reflected
radiance, Lr (x → Θ).

where L(x ← Ψ) is a radiance arriving at x from the incoming di-
rection, Ψ, cos θx is used to consider the angle between the incoming
direction and the surface normal, and the BRDF fr(·) returns the
outgoing radiance given its input. The rendering equation can be repre-

sented in different manners including
hemispherical or area integration.

We use the hemispherical coordinates to derive the rendering
equation shown in Eq. 13.1, known as hemispherical integration. In
some cases, a different form of the rendering equation, specifically
area integration, is used. We consider the area integration of the
rendering equation in the following section.

13.2 Area Formulation

To derive the hemispherical integration of the rendering equation, we
used differential solid angles to consider all the possible incoming
light direction to the location x. We now derive the area integration
of the rendering equation by considering a differential area unit, in a
similar manner using the differential solid angle unit.

Let us introduce a visible point, y, given the negated direction,
−Ψ, of an incoming ray direction, Ψ, from the location x (Fig. 13.2).
We can then have the following equation thanks to the invariance of
radiance:

L(x ← Ψ) = L(y→ −Ψ). (13.2)

Our intention is to integrate any incoming light directions based on
y. To do this, we need to substitute the differential solid angle by
the differential area. By the definition of the solid angle, we have the
following equation:

dwΨ =
dA cos θy

r2
xy

, (13.3)

where θy is the angle between the differential area dA and the orthog-
onal area from the incoming ray direction, and rxy is the distance
between x and y.

When we plug the above two equations, we have the following
equation:

Lr(x → Θ) =
∫

y
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

dA, (13.4)
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Figure 13.2: This figure shows
a configuration for deriving
the area formulation of the
rendering equation.

where y is any visible area on triangles from x. In the above equation,
we need to first compute visible areas from x on triangles. Instead,
we would like to integrate the equation on any possible area while
considering visibility, V(x, y), which is 1 when y is visible from x,
and 0 otherwise. We then have the following area integration of the
rendering equation:

Lr(x → Θ) =
∫

A
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

V(x, y)dA,

(13.5)
where A indicates any area on triangles.

Form factor. The radiosity algorithm requires to compute form
factors that measure how much light from a patch is transferred
to another patch (Sec. 11.2). The area integration of the rendering
equation (Eq. 13.5) is equivalent to a form factor between a point on
a surface and any points on another surface, while a diffuse BRDF is
used in the equation. For the form factor between two surfaces, we
simply perform one more integration over the surface.
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