
S U N G - E U I YO O N , K A I S T

R E N D E R I N G

F R E E LY AVA I L A B L E O N T H E I N T E R N E T



Copyright © 2018 Sung-eui Yoon, KAIST

freely available on the internet

http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render


Part I

Rasterization





13

Rasterization is one of most popular rendering techniques devel-
oped for computer graphics. It simply projects triangles in a scene
into a viewing space and color pixels overlapped with those triangles.
This approach is very simple and thus can be implemented efficiently
in specialized hardwares. Especially, many graphics hardware and
GPUs support this rasterization scheme.

It, however, does not simulate the natural interaction between light
and materials. Simply speaking, in reality, objects are not projected
into our eyes! Due to this issue, rasterization schemes have funda-
mental drawbacks of simulating various rendering effects such as
shadows, transparency, and so on. Nonetheless, thanks to its fast per-
formance, many techniques and fixes have been proposed to improve
its rendering quality.

In this part, we discuss the fundamental engine of rasterization,
which is developed in many graphics library such as OpenGL and
DiretX accelerated by GPUs. In other parts , we study global illu-
mination that physically simulates interactions between lights and
materials.

1.4 Related Materials

Many useful resources for rasterization techniques are available.
Some of them are listed here:

• OpenGL Programming Guide. OpenGL is one of very popular
computer graphics library that can be used in a wide variety of
computing platform including Windows, Linux, and mobile OS.
OpenGL provides various useful low-level graphics APIs, and
they are well explained in this book and in its reference book.
Early version of these books are available on free at internet. We
also explain some of OpenGL APIs and their concepts, when we
explain concepts of rasterization for delivering concrete examples.

• Real-time rendering 9 and its resource. This book covers a vast 9 Tomas Akenine-Möller, Eric Haines,
and Naty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., 2008

amount of topics that are related to rasterization and real-time
rendering techniques. Its resource cite 10 has many useful web 10 http://www.realtimerendering.com/

pages and links.

• OpenGL tutorials. Many OpenGL tutorials exist at Web. Some of
them are based on the legacy OpenGL, but http://www.opengl-tutorial.
org/ discusses useful tutorials based on a recent OpenGL (ver. 3.3
and later).

http://www.realtimerendering.com/
http://www.opengl-tutorial.org/
http://www.opengl-tutorial.org/




2
Rendering Pipeline

Rendering triangles for scenes requires an excessive amount of
computation time, since there could be many triangles representing
scenes, and each triangle can map to hundreds of pixels in the screen
space. As a result, carefully designed steps, known as rendering
pipeline, has been proposed.

2.1 Classic Rendering Pipeline

Let us first discuss the classic rendering pipeline, before studying a
modern, but complex one.

Fig. 7.1 shows an example of a classic rendering pipeline running
on a GPU. An graphics application runs on a CPU in general and
sends geometry of the scene and a camera setting that its user wants
to see to a GPU by using a graphics library such as OpenGL. The
rendering pipeline implemented in a GPU processes such requests
and computes an output image displayed in a screen.

In general, the rendering pipeline consists of many steps for
drawing an image from the user’s camera position and orientation in
an efficient manner. At a high level, they usually breaks into vertex
processing and pixel processing units. The vertex processing step
transforms input geometry into ones mapped in the screen space.
Those ones are converted into pixels with appropriate colors by
the pixel processing step, and this step is commonly known as the
rasterization step.

Historically, these steps take a high computation time and thus
are implemented in a chip in a hard-wired manner. These steps,
therefore, are rather fixed functions and invoked through graphics
APIs. As we have more processing power and developers request
more flexibility on programming, the GPU implementing these
steps become more general like CPU and can run various graphics
programs such as OpenGL shaders.

While more accurate rendering techniques (e.g., global illumi-



16 rendering

14

Classic Rendering Pipeline

CPU

GPU

Transformation: 
Vertex processing

Rasterization: 
Pixel processing

Figure 2.1: This shows a
schematic diagram of classic
rendering pipeline consisting
only two steps: vertex and pixel
processing steps.

nation) have been proposed with high performance, rasterization
scheme is one of the most efficient rendering algorithms specializing
on local illumination, which considers the light energy transfer be-
tween a surface and a light source. We therefore study this scheme in
a detailed manner in Chapter 3 and 7.

2.2 Modern Rendering Pipeline

Figure 2.2: This shows a ren-
dering pipeline adopted in
OpenGL 3.0. This image is
excerpted from the OpenGL
homepage.

Fig. 7.2 shows a schematic view on a modern rendering pipeline
adopted in OpenGL 3.0. While this differs a lot from the classical one,
it shares both vertex and pixel (e.g., fragment) processing steps.

• Vertex specification. Vertices and triangles are defined and passed
to the following step.

• Vertex processing. Each vertex is processed by a vertex shader, a
program working on each vertex. It performs various modeling
transformation, viewing, and projection transformations.

• Vertex post-processing. It performs various basic operations after
the vertex processing step and serves as a setup stage for the
following steps such as rasterization. It includes clipping (Sec. 6.4),
homogeneous divide (Sec. 4.2.1), and viewport transformation
(Sec. 3.1).

• Primitive assembly. Face culling is performed in this step.

• Rasterization. This step converts a triangle represented by vertices
into a number of fragments.

• Fragment shader. It also processes each fragment generated by the
prior rasterization step.



rendering pipeline 17

2.3 OpenGL and Other Tools

The rendering pipeline has been implemented and accelerated in
GPUs. To enjoy such hardware acceleration, we use OpenGL and
DirectX. OpenGL is more widely available in different operation
systems and devices, since DirectX depends on Windows OS. Most
concepts and techniques that are covered in this part are available at
such APIs. Nonetheless, it is useful to know what other tools related
to graphics are available and their goals. Fig. 2.3 shows other tools
and languages that can utilize various features of GPU other than the
rasterization.

Recently, Vulkan was introduced for achieving even higher per-
formance on mobile phones 1 that have lower performance than PCs. 1 G. Sellers and J.M. Kessenich. Vulkan

Programming Guide: The Official Guide to
Learning Vulkan. Addison Wesley, 2016

For achieving its goal, Vulkan allows users to various low-level APIs
with low overheads and multi-tasking. Nonetheless, it comes with
certain costs such as higher programming burdens to users.

While these APIs provide the full features of the rendering
pipeline, they are rather low-level APIs. When we want to develop
high-level applications such as a game, we need to utilize a more
powerful set of tools and SWs. This is a gap that modern game and
rendering engines such as Unity try to fill in. Additionally, in graph-
ics applications (e.g., games and movies), content creation is one of
main tasks, and many modeling and animation tools are available.

Initially, GPU is designed as a specialized hardware to accelerate
the rendering process, which is captured in the rendering pipeline.
However, as the performance of GPU is getting higher and various
demands on programmability on the rendering pipeline arise. As
a result, parts of vertex and fragment stages can be programmable
through a dedicated language, i.e., GLSL and HLSL.

While these shading languages are designed to effectively utilize
functions of GPUs for graphics applications, non-traditional needs on
using GPUs for non-graphics applications keep increasing, thanks to
its higher performance on streaming tasks than CPUs. To accommo-
date such demands, a general purpose language for utilizing GPUs
has been proposed, and CUDA and OpenCL are two examples.

2.3.1 Common Questions

What if we have new input devices (e.g., joystick, or multiple input
devices used in PlayStation or XBox)? How can we handle those de-
vices in OpenGL programs? OpenGL does not have any function-
ality to support those various input devices. GLUT library supports
some of basic input devices such as keyboard and mouses. For other
devices, you need to use other external libraries that support those



18 rendering

Figure 2.3: This figure shows
other APIs, SWs, and languages
that are related to OpenGL
and computer graphics. In
this book, we mainly discuss
the core rendering pipeline
that rasterizes input models.
Nonetheless, many game and
rendering engines (e.g., Unity)
are commonly used as conve-
nient, high-level tools. Also,
shading languages are used in
recent OpenGL verions, to add
various details on rendering
results. Additionally, general
purpose computing languages
for GPU (e.g., CUDA) are also
used for implementing arbitrary
programs on GPUs. Images
are excerpted from the Vulkan
overview and Google images.

devices.

In what cases, is OpenGL used rather than DirectX? OpenGL is
cross-platform graphics API, while DirectX is proprietary library for
Windows. Because of the openness of OpenGL, it, more specifically,
OpenGL ES, is widely used for many embedded systems including
mobile phones.

In what portions of my OpenGL program are executed in CPU and
GPU? In a typical OpenGL program, rendering parts (e.g., portions
started with glBegin and ended with glEnd) are performed in GPU,
graphics hardware, if your computer is equipped with such GPU. All
the control parts, e.g., calling OpenGL functions and handling events,
are performed in CPU. In other words, various functionality inside
OpenGL APIs are commonly performed in GPU, while all the other
parts are performed in CPU.




