
S U N G - E U I YO O N , K A I S T

R E N D E R I N G

F R E E LY AVA I L A B L E O N T H E I N T E R N E T

Copyright © 2018 Sung-eui Yoon, KAIST

freely available on the internet

http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

6
Clipping and Culling

Figure 6.1: The top model
shows a coal-fired power plant
model consisting of 12 millions
of triangles. The model has
many pipes within the green,
furnace room. It has drastically
irregular distributions of trian-
gles across the model ranging
from a small bolt to large walls
in the furnace. This model is
courtesy of an anonymous
donor. Bottom images show
effects of performing various
culling operations. The middle
image is the result after per-
forming view-frustum culling
to the original power plant
model shown in the left. We
show these models in a 3rd per-
son view, while the light blue
shown in black lines represents
the 1st person’s view where we
perform various culling. The
right image shows the result
after performing occlusion
culling. Since the model has
a depth complexity, occlusion
culling shows a high culling
ratio in this case.

The performance of rasterization linearly increases as we have
more triangles. While GPU accelerates the performance of rasteriza-
tion, it improves only a constant factor, not the time complexity, i.e.,
growth rate, of the rasterization method. Especially, when we have
so many triangles in a scene, it may be prohibitively slow for such
scenes. An example includes a power plant scene consisting of 12

millions of triangles (Fig. 6.1).
In this chapter, we discuss two acceleration techniques, clipping

and culling, to improve the performance of rasterization. At a high
level, their main concepts are:

1. Culling. Culling throws away entire primitives (e.g., triangles)
and objects that cannot possibly be visible to the user. This is one
of important rendering acceleration methods.

48 rendering

2. Clipping. Clipping clips off the visible portion of a triangle and
throws away the invisible part. This simplifies various parts of the
rasterization process.

6.1 Culling

Culling conservatively identifies a set of triangles and objects that
are invisible to the viewer, and does not pass them to the rendering
pipeline. Since the culling process itself can have its own overhead, it
is important to design an efficient culling method, while identifying a
large portion of invisible triangles among their maximum set.

Fig. 6.1 shows two culling methods, view-frustum culling and
occlusion culling, applied to the power plant model. Since this model
has a high depth complexity, i.e., many triangles map to a pixel in
the screen image, and widely distributed triangles across its scene,
such culling methods can be very effective, while they have their
own computational overheads. Some of culling methods work as the
following:

1. Back-face culling. We cannot see triangles heading away from us,
unless such triangles are transparent. In opaque models, back-face
triangles are blocked by front-face triangles. Back-face culling
can be done quite easily and integrated in the rendering pipeline
(Sec. 6.5).

2. View-frustum culling. The view-frustum (Fig. 6.1) shows an
example of the view-frustum and its culling result. Typically, the
view-frustum is defined as a canonical view volume within the
rendering pipeline and performed by checking whether a triangle
or an object is inside the volume or not.

Figure 6.2: Back-face triangles
of closed objects are invisible,
and back-face culling aims to
cull such triangles.

3. Occlusion culling. In the case of opaque models, we cannot
see triangles located behind the closest triangle to the viewer.
As we have more complex models, such models tend to have
more numbers of triangles and thus more numbers of triangles
map to a single pixel, resulting in a higher depth complexity. In
this case, occlusion culling identifies such occluded triangles or
objects. Typically, occlusion culling has been more difficult to be
adopted, since knowing whether a triangle is occluded or not may
require rasterizing the triangle, which we wanted to avoid initially
through occlusion culling.

In the next section, we discuss inside/outside tests that are basis
for many culling and clipping methods.

clipping and culling 49

6.2 Inside/Outside Tests

Figure 6.3: Notations of the
implicit line equation.

Many culling and clipping methods check whether a point (or other
primitives) is inside or outside against a line in 2D or a plane in 3D.
We thus start with a definition of a line for the sake of simplicity; the
discussion with the line naturally extends to 3D or other dimensions.

Among many alternatives on definitions on lines, we use the
following implicit line representation:

(nx , ny) · (x, y) − d = 0 →
nx x + ny y − d = 0 →

[
nx ny −d

] x
y
1

 = 0 →

l̄ ṗ = 0, (6.1)

where (nx , ny) ≡ ~n is a unit normal vector of the line equation
and ṗ is a point in the homogeneous coordinate. We use l̄ to denote
coefficients of the line.

Given the line equation, we also define the positive half space, ṗ+ ,
where l̄(ṗ+) ≡ l̄ ṗ+ > 0; we also define the negative half space in
a similar way. We use the following lemma for explaining culling
techniques.

Lemma 6.2.1. When the normal of the line equation, Eq. 6.1, is a unit
normal vector, d gives the L2 distance from the origin of the coordinate
system to the line.

Proof. Let us define (x, y) to be the point in the line realizing the
minimum L2 distance from the origin to the line, and we then have
the following equation:

(nx , ny) = s(x, y),

n2
x + n2

y = 1,

s2(x2 + y2) = 1. (6.2)

where s is a non-zero constant. Since the point (x, y) is in the line,
we have the following equation:

nx x + ny y = d,

d =
1
s

(
n2

x + n2
y

)
=

1
s

,

=
√

x2 + y2 ∵ Eq. 6.2. (6.3)

50 rendering

Figure 6.4: This shows three
different cases of culling the
polygon given its enclosing
spherical bounding volume.

In a similar way of proving the lemma, we can see that given
a point (x, y) that is or is not on a line whose normal is (nx , ny),
nx x + ny y gives a distance from the point to the line. We also utilize
this property for designing culling techniques.

6.3 View-Frustum and Back-Face Culling

Let us discuss a simple culling scenario against a line before moving
to view-frustum and back-face culling. Suppose that we have a
polygon, and we can cull it when the polygon is located totally
outside a culling line, as shown in Fig. 6.4. Since it takes a high
culling overhead against each vertex of the polygon with many
vertices against the line, we use a bounding volume that tightly
encloses the polygon.

There are many different types of bounding volumes (BVs) in-
cluding spheres, boxes, oriented boxes, etc. Commonly, spheres
and axis-aligned bounding boxes (AABBs) are frequently chosen
bounding volumes, since they are easy to compute with a low com-
putational overhead and a reasonably high culling ratio. Detailed
discussions are available in the chapter of bounding volumes and
bounding volume hierarchy for ray tracing (Sec. 10.3). In this section,
we simply use the sphere for the sake of clear explanation.

Suppose that we use a sphere enclosing the polygon. As a simple
culling method in this case, we use its center, c, and radius, r, irre-
spective of how many vertices the polygon has. Specifically, we test
the center against a culling line, l(ṗ), by plugging its center position
to its implicit line equation. There are three different cases (Fig. 6.4),
depending on the value of l(c). Since we assume to cull the polygon
when it is located outside the line, we focus on this case only in this
chapter.

The value of l(c) indicates the L2 distance from the line to the
center c. When l(c) > r indicates that the sphere is conservatively

clipping and culling 51

Figure 6.5: The left image
shows a view-frustum in 2D,
while the right image shows
its canonical view volumes.
These lines in 2D and planes
in 3D of the canonical view
are compactly represented and
thus can result in fast runtime
performance.

outside the line, we can cull it from the further rendering process.
With the provided information, it is unclear whether this simple
culling operations results in a higher rendering performance than
naively rendering all those objects. Nonetheless, we have discussed
a basic concept of culling against a line. The performance of this
basic approach can be significantly improved by using hierarchically
computed bounding volumes, known as bounding volume hierarchy
(Sec. 10.3).

Let’s see how we perform the view-frustum culling. In rasteriza-
tion, we assume that we see objects only located within the view-
frustum, while this is not the case in reality 1. Based on this assump- 1 We can see other objects that are

reflected by objects (e.g., mirror) located
within the view-frustum.

tion, we can safely cull triangles located outside the view-frustum.
The view-frustum is defined as the left image of Fig. 6.5. We can

define such planes with the implicit plane equations, but the view-
frustum defined by the given camera setting is transformed to the
canonical view volume, which are defined as x = ±1, y = ±1, z =

±1, as mentioned in Sec 4.2. The right image of Fig. 6.5 shows the
canonical view-volume in 2D.

When a triangle is located outside either one of these six planes,
we cull the triangle. This operation applies to each triangle, and
is adopted in the rendering pipeline. For large-scale scenes where
the view-frustum contains only a portion of them, we can apply
the culling method in a hierarchical manner by using a hierarchical
acceleration data structure such as bounding volume hierarchy. This
approach is more involved and thus a rendering engine supports it.

Back-face culling can be done in a different way. In this section, we
discuss a method utilizing the inside/outside tests. One can observe
that we cannot see a triangle, when it faces backward (Fig. 6.2). More
specifically, suppose that we compute a plane passing the triangle.
Then, the triangle is classified as the back-face, when the eye is

52 rendering

located in the negative half side of the plane.
To compute such a plane, we need a normal, the orthogonal vector

heading outward to the plane. Given a vertex ordering from v0, v1, v2

in the counter-clock wise, the normal of the triangle, ~n, and the
distance, d, of the plane is computed as the following:

~n = (v1 − v0)× (v2 − v0),

d = ~n · v0, (6.4)

where the dot product computes the projected distance of the vertex
v0 to the normal direction.

Later, in Ch. 7.3, we discuss a faster back-face culling method,
which is more appropriate to be adopted in the rendering pipeline.

Back-face culling in OpenGL. To cull back facing triangles in
OpenGL, we use glCullFace(·) after enabling the feature (e.g.,
GL_CULL_FACE). OpenGL identifies back-face or front-face based
on its normal computed from its vertex ordering (Ch. 7.3). OpenGL
also provides a way of defining back-face and front-face based on a
winding order of vertices between clockwise or counter-clockwise.
The counter-clockwise ordering indicates that when we wrap those
vertices starting from v0, passing v1 to v2 with the hand, the thumb
direction is the front-face. By culling away such back facing triangles,
we can avoid to generate fragments from those triangles, resulting in
a higher performance.

6.4 Clipping

Figure 6.6: A configuration of
culling an edge against a line.

In this section, we discuss clipping that identifies only a visible
portion of a primitive, i.e., triangle, and pass it to the following stage
(e.g., rasterization stage) in the rendering pipeline.

Let’s first discuss a simple case, clipping a line segment consisting
of two points, ṗ0, ṗ1, against another line, whose coefficient is rep-
resented by~l. Our goal here is to identify the clipping point, ṗ, that
intersects with another line~l. To compute the point, we present ṗ
with a line parameter, t, as the following:

ṗ = ṗ0 + t(ṗ1 − ṗ0). (6.5)

The point should be in another line and thus l̄ ṗ = 0. We then have
the following equation:

l̄ · (ṗ0 + t(ṗ1 − ṗ0)),

t =
−(l̄ · ṗ0)

l̄ · (ṗ1 − ṗ0)
. (6.6)

clipping and culling 53

Figure 6.8: The left shows out-
codes for each region defined
by four lines of the view re-
gion. The right shows results
of culling edges based on the
Cohen-Sutherland method.

Each vertex is also associated with other attributes like colors and
texture coordinates. We can also compute those attributes for the
clipping point based on the same interpolation method.

Figure 6.7: The Sutherland-
Hodgman method computes a
clipped polygon against a line.

Based on this simple line-by-line clipping method, we explain a
clipping method, Sutherland-Hodgman algorithm for a polygon in-
cluding a triangle against a line (e.g., a line of the viewport rectangle)
of a convex viewport.

In this method, we traverse each edge of the polygon and check
whether the edge is totally inside against the line or not. When it is
totally inside or outside, we keep it or throw away it, respectively.
Otherwise, we compute two clipping points as shown in Fig. 6.7 and
connect them with a new edge. We also apply this process repeatedly
against each line of the viewport region.

6.4.1 Cohen-Sutherland Clipping Method

The Cohen-Sutherland method is used to quickly check whether
an edge is totally inside or outside given the view region, by using
the concept of outcodes. An outcode is assigned to each vertex of
primitives, whose each bit encodes whether the vertex is inside or
outside against its corresponding line (Fig. 6.8). For example, the first
bit in the figure corresponds inside (1) or outside (0) regions against
the red line.

When we consider two binary codes, c1 and c2, assigned to two
vertices of an edge, we have the following conditions and actions:

• If (c1 ∨ c2) = 0, the edge is inside.

• If (c1 ∧ c2) 6= 0, the edge is totally outside.

• If (c1 ∧ c2) = 0, the edge potentially crosses the clip region at planes
indicated by true bits in (c1 ⊕ c2). Nonetheless, this could be false
positive, meaning that they are identified to be potentially crossing
the clip region, but are not actually.

54 rendering

22

Clipping in the Pipelineݔ, ,ݕ ,ݖ 1

,ᇱݔ ,′ݕ ,′ݖ ′ݓ

,ᇱݓ/ᇱݔ ,′ݓ/ᇱݕ ,′ݓ/ᇱݖ 1
Homogeneous

divide

Various
transformations

Option 1

Option 2

Option 3

-1 1
1

-1

What is the best place?
- Option 2 (clip space)

Figure 6.9: This shows different
stages of the rendering pipeline
with vertex coordinates and
view-frustum in each space.

This also applies to a triangle case by utilizing three outcodes com-
puted from three vertices of the triangle.

6.5 Clipping in the Pipeline

We discussed how to clip an edge against a plane of the view-
frustum before. We would like to now discuss in which stage of
the rendering pipeline we perform the clipping operation.

Fig. 6.9 shows how vertex coordinates change as we perform
different steps in the rendering pipeline. Overall, there are three
different places where we can perform the clipping operation. The
first option is the world space where the view-frustum is defined.
The second and third options are before and after performing the
homogeneous divide.

Each option has its pros and cons. The most intuitive option
would be the first one. Also, the third option seems to be good, since
the plane equations of the view-frustum in that space are canonical
like x = 1, and the clipping operation can be done quite quickly.
Nonetheless, if we do not clip an edge that spans outside the view-
frustum before this stage, the edge flips around due to the projection
carried by the homogeneous divide, and generates an unexpected
behavior. As a result, the third option is not possible.

Interestingly, the second option has been identified empirically
to show the best place to perform the operation, since it does not
have the problem of the option three and their plane equations are
also defined quite easily. The space of the option two is known as
the clip space. Let us discuss how the view-frustum is defined in this

clipping and culling 55

clip space. Specifically, x′/w′ = 1 in the third space corresponds to
x′/w′w′ = w′ → x′ = w′ in the clip space, which does not depend on
the camera setting, and thus can be done efficiently.

2 As you may realize through this discussion, the rendering 2 Structures of the rendering pipeline
are not fixed and can be changed for
better performance and usability.

pipeline has been heavily tested and optimized to deliver the highest
rendering performance. Nonetheless, these choices can change de-
pending on different workloads (e.g., some games use geometry or
texture heavily) and hardware performance (e.g., faster memory read
or computation).

6.6 Common Questions

Even though some objects are outside the view frustum, they can
be seen though transparent objects or reflected from mirrors. Ex-
actly. The rasterization algorithm is a drastically simplified rendering
algorithm over the real interactions between lights and materials. The
direct illumination, seen thought primary rays, are well captured
by rasterization, while other indirect illuminations are not captured
well in the rasterization. To address this problem, many techniques
have been proposed in the field of rasterization. However, the most
natural way of handling them is to use ray tracing based rendering
algorithms.

	Interaction
	Loading Objects
	Selection
	Virtual Trackball
	Transformation Hierarchy

