
S U N G - E U I YO O N , K A I S T

R E N D E R I N G

F R E E LY AVA I L A B L E O N T H E I N T E R N E T

Copyright © 2018 Sung-eui Yoon, KAIST

freely available on the internet

http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render

7
Rasterization

The main idea of rasterization is to project a triangle into the view
space and rasterize it into fragments in the color and depth buffers.
In this chapter, we assume that vertices of the triangle are projected
into the view space, after they undergo various transformations,
followed by clipping and NDC transformation.

7.1 Primitive Rasterization
Rasterization is optimized for process-
ing triangles thanks to their simplicity.For the rasterization process, we commonly use triangles as input

primitives, mainly because it is the simplest polygon and simplifies
the rasterization process. Nonetheless, these other representations
are also decomposed into a set of triangles and fed into the rasteriza-
tion process.

Rasterization process has two main goals: 1) pixel coverage deter-
mination (Fig. 7.1) and 2) parameter interpolation (Fig. 7.5). Given a
pixel of the color buffer (or other buffers), we determine whether the
pixel belongs to a given triangle or not. Once the pixel is covered by
the triangle, we also need to compute its color or other parameters
such as its depth value for the depth buffer.

For the coverage problems, many directions are possible. One is to
check whether the center of a pixel is inside of a triangle. Another is
to measure an area coverage ratio of a pixel against the triangle. The
first one is based on a point sample, while the latter one is based on
area computation. While the area based computation is more correct,
the sample based approach is more efficient, and thus is commonly
adopted for rasterization process. They share common pros and
cons between point sample based and area based approaches, as we
discussed for image-space and object-space methods (Ch. 5.2).

58 rendering

46

݁̅݁̅ଵ
݁̅ଶݒሶ ሶଵݒ

ሶଶݒ Figure 7.1: The left shows one,
pixel coverage determination, of
two main goals of the rasteriza-
tion process. The right shows
configurations of vertices and
edges of a triangle used for our
discussion.

12

Scanline Triangle Rasterizer
●Walk along edges and process one scanline

at a time
●Rasterize spans between edges

Figure 7.2: This shows a scan-
line based rasterization. The
scanline can be incrementally
computed between two neigh-
boring rows.

Scanline based triangle rasterization. Some of early techniques
for rasterization are based on a concept of scanline, a row of pixels
that span a triangle (Fig. 7.2). At those days, the memory was very
expensive, and thus having the full resolution of color and depth
buffers is not preferred. Instead, these scaneline based approaches
maintain a scanline and incrementally update the scanline to raster
the whole triangle. Specially, we rasterize an input triangle from
top to bottom. Once we meet a vertex of the triangle, we setup the
scanline information (e.g., starting and end coordinates shown as red
pixels in the figure). For the next scanline, we incrementally update
those starting and end coordinates by utilizing slope information of
two edges starting from the vertex.

While this technique was adopted early on, it was identified to
show poor scalability to handle scenes with many triangles, since this
technique relies on expensive sorting operations and is not friendly
for parallelization. Instead, ray tracing and Z-buffer techniques as
visible surface determination, i.e., visibility techniques, are prevail
techniques in these days (Sec. 10.4).

In the next section, we discuss another rasterization technique
combined with the Z-buffer technique.

7.2 Rasterization with Edge Equations

In this section, we discuss a rasterization technique for triangles
based on edge equations, as shown in the right side of Fig. 7.1. We
will see that this approach is simply and friendly for parallelization,
to achieve a high performance and thus handle a scene with many
triangles.

17

Edge Equation Coefficients
● The cross product between 2 homogeneous

points generates the line between them

● A pixel at (x,y) is “inside” an edge if
E(x,y)>0

0v

1v

0 1

t t
0 0 1 1

0 1 1 0 0 1 1 0

e v v

[x y 1] [x y 1]

[(y y) (x x) (x y x y)]

= ×

= ×
= − − −

e

A B C

E(x,y) Ax By C= + +Figure 7.3: An edge represen-
tation from two vertices of a
triangle.

Let us first compute an edge equation given two vertices, v̇0

and v̇1, of a triangle (Fig. 7.3). Our goal is to construct an edge

rasterization 59

equation, ē, whose normal vector heads towards the inside of the
triangle. Overall, coefficients of the edge equation is given by the
cross product between those two vertices:

ē =v̇0 × v̇1

=
[

x0 y0 1
]t
×

[
x1 y1 1

]t

=
[
(y0 − y1) (x1 − x0) (x0y1 − x1y0)

]
=

[
A B C

]
. (7.1)

It is not intuitive to compute the edge equation in this way. Here is
the rationale. Think of a line passing v̇0 in the homogeneous space,
i.e, (x0w, y0w, w) with an arbitrary value w. We also think another
line passing v̇1. The edge in the 2D space maps to a plane in the
3D homogeneous space. Since these two lines and the plane passes
the origin, (0, 0, 0), of the 3D homogeneous space, the normal of
the plane, i.e., the edge equation, is computed by the cross product
between v̇0 − (0, 0, 0) and v̇1 − (0, 0, 0).

Once we set the edge equation ē in this way, points, ṗ, inside the
triangle have ē ṗ > 0. We then see that pixels of the triangle reside
in the positive half-spaces against three edge equations from the
triangle (Fig. 7.1).

While the aforementioned approach is simple enough to identify
which pixels are inside a triangle, there are a few special cases re-
quiring certain treatments. They are two cases of sharing edges and
vertices.

Sharing an edge. The left image of Fig. 7.4 shows that a shared
edge of two triangles passes the center of a pixel. This case arises
rarely, but can happen, since there are many pixels, say 1 M pixels
when we use a 1 K by 1 K image resolution. When we assign the
pixel to both of those two triangles, the pixel color varies depending
on an order of rendering those two triangles, which is not a desirable
effect. We thus need a tie-breaker assigning only a single triangle to
the pixel.

A simple method is to consider the normal of each edge of a
triangle and to assign the pixel to either one of them. For example,
we can use the following simple tie-breaker:

bool t =

A > 0 if A 6= 0,

B > 0 otherwise,

where (A, B) are the normal vector of an edge computed by Eq 7.1.
We then assign a triangle to the pixel, when (ē(ṗ) > 0) ∨ (ē(ṗ) =

0 ∧ t).

60 rendering

47

triangle 1

triangle 2

(A,B)

Pixel center

Snapped vertex

Figure 7.4: This figure shows
two cases requiring special
treatments for the pixel cover-
age.

Sharing a vertex. The right image of Fig. 7.4 shows another degen-
erated case, where a shared vertex of triangles is located at the center
of the pixel. For handling this case, one can use a similar tie-breaker
that we designed for the shared edge case. Another approach is to
snap or quantize vertices of triangles in a way that those snapped or
quantized vertices are not aligned with center coordinates of pixels.

7.3 Interpolation Parameters

21

Interpolating Parameters
● Specify a parameter, say redness (r) at

each vertex of the triangle
● Linear interpolation creates a planar function

x
y

Figure 7.5: This shows the lin-
ear interpolation of color values
associated with three vertices.

In the last section, we discussed which pixels are covered by a tri-
angle based its edge equations. In this section, we study how to
compute colors and other parameters for the pixel, given associated
information of the triangle.

Suppose that each vertex has associated information such as
color, normal, etc. For the sake of simplicity, we explain various
concepts based on the color, especially, red channel information,
r(x, y), given a pixel (x, y). Given three red values associated with
three vertices of a triangle, we need a way of interpolating these
values for a pixel within the triangle. The simplest method is to pick
a red value among those three values. While this is simple, it does
not produce reasonably high-quality rendering results.

Among many options, we use the linear interpolation from those
available values associated with three vertices (Fig. 7.5). The linear
red plane is then defined as the following:

r(x, y) = Ar x + Br + Cr , (7.2)

where Ar , Br , Cr are three coefficients of the 2D plane. There are
three unknowns and we thus need three equations to compute the
plane. Fortunately, these three equations are defined by available

rasterization 61

information of three vertices as the following equation:

[
r0 r1 r2

]
=

[
Ar Br Cr

] x0 x1 x2

y0 y1 y2

1 1 1

 →

[
Ar Br Cr

]
=

[
r0 r1 r2

]
(y1 − y2) (x2 − x1) (x1y2 − x2y1)

(y2 − y0) (x0 − x2) (x2y0 − x0y2)

(y0 − y1) (x1 − x0) (x0y1 − x1y0)

det

x0 x1 x2

y0 y1 y2

1 1 1

,

(7.3)

where r0 , r1 , r2 are three red values associated to corresponding three
vertices.

An interesting fact is that the area of the triangle, A v̇0 v̇1 v̇2 , is
computed as the following by utilizing the determinant of a matrix:

A v̇0 v̇1 v̇2 =
1
2

det

x0 x1 x2

y0 y1 y2

1 1 1

 (7.4)

=
1
2
((x1y2 − x2y1) + (x2y0 − x0y2) + (x0y1 − x1y0))

=
1
2
(C20 + C12 + C01), (7.5)

where C20 , C12 , C01 are coefficients of three edge equations, ē20 , ē12 , ē01,
respectively; ē20 indicates the edge equation constructed from v̇2 to
v̇0.

Note that when the area is zero, the triangle is invisible. Further-
more, when the area is negative, the triangle is back-facing. If the
back-face culling is enabled (Ch. 6.3), we cull the triangle for later ras-
terization. Otherwise, we flip normals of edge equations and perform
later rasterization.

Let’s consider the interpolation equation (Eq. 7.3). Actually, other
components of the top matrix are coefficients of three edge equations!
We then have the following interpolation equation:

[
Ar Br Cr

]
=

1
2A v̇0 v̇1 v̇2

[
r0 r1 r2

] ē20

ē12

ē01

 , (7.6)

where ē20 represents an 1 by 3 vector containing its three coefficients,
A20 , B20 , C20.

Once we compute coefficients of the red plane (Eq. 7.2), we can
compute a color on any pixel within the triangle.

62 rendering

Figure 7.6: The left shows an in-
put scene, while the right image
shows its Z-buffer. The white
color represents the farthest
depth value, 1, while the black
one indicates the closest value,
0.

7.4 Z-Buffering

The Z-buffer technique is a visibility determination technique, which
encodes the depth value of a visible triangle per each pixel. Overall,
it is an image-space technique to determine the visible triangle by
using a 2D buffer, i.e., depth-buffer. Z-buffer is one of the most important

concepts for rasterization. Simply
speaking, we address a complex
problem of visibility determination
using a 2D map.

Fig. 7.6 visualizes the depth buffer, i.e., Z-buffer, given a scene.
The depth buffer simply contains depth values of visible triangles.
Note that each vertex of a triangle has its position information
(x, y, z). Once we project it to the image space, we also have its
depth value in the canonical view volume (Ch. 4.2). The depth value
in the canonical view volume spans in the range of [0, 1], where 0
indicates the closest one, while 1 indicates the farthest one.

Given the depth value of each pixel, more correctly, fragment,
rasterized from a triangle, we can easily know that whether the
fragment has a depth value smaller than the one stored in the depth
buffer and thus visible. Once the fragment has a smaller depth value,
we update the depth buffer with that depth value at the pixel. We
continue this process until we process all the fragments generated
from the rasterization process.

As you can see, this Z-buffer is very simple, and thus can be well
adopted to a hardware implementation. While there have been many
advanced techniques, this Z-buffer technique is the most common
technique adopted in rasterization. Nonetheless, recent ray tracing
techniques are getting wider attentions thanks to its conceptual
simplicity and better functionality supporting realistic rendering
effects (Ch. 10).

Processing order. Note that the rasterization method based on the
edge equation can be parallelized among different pixels. For exam-
ple, a rasterization result of a pixel does not depends on anything of
another pixel. This opens up various approaches to parallelize the

rasterization 63

process for achieving higher performance.

26

Traversing Pixels

● Free to traverse pixels
● Edge and interpolation equations can be

computed at any point

● Try to minimize work
● Restrict traversal to primitive bounding box
● Hierarchical traversal

●Knock out tiles of pixels (say 4x4) at a time
●Test corners of tiles against equations
●Test individual pixels of tiles not entirely
inside or outside

Figure 7.7: Rasterization pro-
cess can be parallelized, and
any ordering of processing
pixels or tiles can be possible.

Fig. 7.7 shows two examples of the processing ordering of pixels
for rasterizing the triangle. In practice, we identify a bounding box
covering the triangle and process the region based on tiles. A tile
is a sub-region, say 4 by 4 pixels, of the image space. A GPU core
is assigned to process each tile. Different GPU cores process those
tiles in a parallel manner, to achieve a high performance. A GPU
core assigned to a tile needs to setup three edge equations for a
pixel, (x, y), in the tile. For the neighboring pixel, say (x, y + 1), we
incrementally compute those edge equations, as the following:

E(x, y) =Ax + By + C,

E(x + 1, y) =A(x + 1) + By + c

=E(x, y) + A. (7.7)

So far, we have discussed the rasterization process converting
a triangle into a set of fragments. This is one of main concepts of
rasterization, setting apart it from ray tracing.

While the rasterization process adopted back-face culling, it can
be very slow, especially, when the given scene has so many triangles.
There have been many scalable techniques (e.g., mesh simplification)
to handle such cases.

	Clipping and Culling
	Culling
	Inside/Outside Tests
	View-Frustum and Back-Face Culling
	Clipping
	Clipping in the Pipeline
	Common Questions

