
S U N G - E U I YO O N , K A I S T

R E N D E R I N G

F R E E LY AVA I L A B L E O N T H E I N T E R N E T



Copyright © 2018 Sung-eui Yoon, KAIST

freely available on the internet

http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018

http://sglab.kaist.ac.kr/~sungeui/render


9
Texture

Achieving higher realism has been one of main goals of computer
graphics. For this goal, we have developed many modeling tech-
niques by using more triangles, lights, and materials. Unfortunately,
using additional resources (e.g., triangles and lights) come with sides
effects such as additional running time and memory overheads. Texture mapping adds additional

details, without much overheads.Since achieving the interactive performance has been another main
goal of computer graphics, various approximation rather than di-
rectly relying upon additional geometry and lights has been studied.
Among various techniques, texture mapping has been one of main
approximation techniques (Fig. 9.1).

One thing that we need to understand is that while textures are
originally designed for representing complex shapes of geometry,
they can be utilized for various other purposes. At a high level, a
texture is simply a 2D array, which is one of the most simplest data
representations in computer architectures, and can be readily pre-
computed and used at runtime. Note that the Z-buffer used for
visibility determination can be considered as a type of a texture.
Thanks to these nice properties, textures have been widely used.

Figure 9.1: Texture mapping
adds a lot of details to the ge-
ometry illuminated by lights,
enabling higher realism without
adding much overheads.



74 rendering

We first explain the main purpose of using texture mapping,
followed by its various applications.

9.1 Texture Mapping

A texture is a 2 D (or 3 D and even a higher dimensional) buffer,
whose each element represents a pixel color or some other values.
Commonly a texture refers to a 2D image. Texture mapping indicates
a mapping from a part of the texture to a part of a model. Fig. 9.3
shows an example of a 2D texture mapping.

45

(x4,y4)
(u4,v4)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

(x3,y3)
(u3,v3)

Figure 9.2: Texture mapping.

We use 2 D texture coordinates, commonly (u, v), to locate a
particular location of a 2D texture. We link the texture location to a
particular location or a vertex of a mesh by using 2D or higher ge-
ometry coordinates (e.g., 3D coordinate (x, y, z) of a vertex). Fig. 9.2
shows that we map (u, v) coordinates of multiple texture locations
to a 2D mesh, i.e., quad in the 2D space, represented by (x, y) coor-
dinates. You may also recall that we use vt token to specify (u, v)
texture coordinates to a vertex for an obj file format (Ch. 5.1).

46

Screen space

Texture space

x

y

u

v

Figure 9.3: The left figure
shows a mapping from a tex-
ture to a triangle representing
a part of a character. We use
a few texture maps with dif-
ferent resolutions. The image
is excerpted from a MMO-
champion site. To perform
texture mapping, we compute
a representative color of a pixel
within the triangle from the
texture space, as shown in the
right figure. Note that a pixel of
the triangle maps to an arbitrar-
ily shaped quadrilateral in the
texture space.

To apply the texture mapping, we compute a texture coordinate of
a fragment of a triangle, while rasterizing the triangle. We compute
the texture coordinate by interpolating texture coordinates associated
with vertices of a triangle, as we did for other attributes (e.g., color)
(Ch. 7.3).

Once we compute the texture coordinate, we compute the 2D
indices of the corresponding texture pixel, known as texel, and use
the color of the texel for illumination or other purposes.

Perspective-correct interpolation. Note that a naive interpolation of
various vertex attributed in the image space does not provide the ex-
pected results that are supposed to be computed by the object-space
interpolation. To achieve the correct result even in the image-space
interpolation, the perspective-correct interpolation is developed.



texture 75

48

Handling Oversampling

texture

sample

Bi-linear interpolation

0 0(x ,y )

1 1(x ,y )

(x,y)α

α
β

0c 1c

2c 3c

Figure 9.4: The left image
shows the case of oversampling.
The sampling in the texture
space is too small compared
to the texture resolution. The
right image shows the bi-linear
interpolation to address the
oversampling problem.

9.2 Oversampling of Textures

Let’s take a look at the right image of Fig. 9.3. A box-shaped frag-
ment generated for rasterizing a triangle maps to a quadrilateral, i.e.,
a polygon with four sides, instead of the uniform box shape. This
phenomenon occurs due to various transformations (e.g., modeling
and projective transformations) and the angle of the triangle against
the view direction. Oversampling occurs when we zoom in

the triangles.Since the pixel in the image space does not match with that in the
texture space, we have two cases: oversampling and undersampling
cases. Oversampling refers to the case where the sampling resolution
in the texture space is smaller than the available resolution of the
texture. Fig. 9.4 shows this oversampling case. The quadrilateral
in the texture space is even contain in a texel of the texture. The
oversampling issue occurs when we magnify the geometry. We aim to reconstruct the original

signal out of available texture samples
and compute the signal value at the
sampled texture location.

Please take a moment to think about how to compute the represen-
tation color for the quadrilateral. Surprisingly, this kind of issues is
quite common in computer graphics, image processing, etc. A simple
method is to identify the nearest neighbor texel center and use its
color for the quadrilateral. In the case of the left image of Fig. 9.4, the
blue pixel is the closest to the quadrilateral, more exactly, the sam-
pling point location. Note that during the rasteriation, we compute
colors or other attributes based on center positions of pixels.

While this nearest neighbor approach is quite fast, its visual qual-
ity is poor, especially along the boundary of texels. In other words,
when two sampling locations are very close, but are in different tex-
els, they get different colors, resulting in visual gaps in the image
space (Fig. 9.5).

Another approach is to use linear interpolation. Given the sam-



76 rendering

14

Visual Comparison

Mag. filter: nearest
Min. filter: linear

Mag. filter: linear
Min. filter: linear

Mag. filter: linear
Min. filter: mipmap

Original texture

Figure 9.5: Different render-
ing results with different mag.
and min. filters for texture
mapping.

pling location, we identify four nearby texels, e.g., c0 to c3 in the
right image of Fig. 9.4. We then perform the linear interpolation
along the U and V texture directions, thus named as bi-linear inter-
polation. Let us define α and β to be a blending factor along X and Y
directions, respectively. They are then defined as the following:

α =
x − x0

x1 − x0
, β =

y − y0

y1 − y0
. (9.1)

The color, c, at the sampling location under the bi-linear interpolation
is computed as follows:

c = (1 − β) ((1 − α)c0 + αc1) + β ((1 − α)c2 + αc3) . (9.2)

The effect of using the bi-linear interpolation over the nearest
neighbor one is shown in Fig. 9.5. We can see that boundary shapes
of texels were smoothened. Nonetheless, we can also see that the
edge information inherent in the original texture was filtered out
too. We can thus see that there are trade-off in terms of filtering
unnecessary edges and preserving original edges. This boils down to
the classical reconstruction and sampling problem.

9.3 Under-sampling of Textures
Under-sampling arises when we zoom
out the geometry, and thus a fragment
of a triangle maps to a large area in the
texture space.

Let us know discuss the other sampling issue, undersampling. Un-
dersampling rises when we zoom out from the geometry and thus
each triangle become small in the image space. Therefore, a pixel of
a triangle maps to a large quadrilateral area in the texture space. The
problem is thus to compute a representative color out of many texels
covered by the quadrilateral.



texture 77

Figure 9.6: This shows a
mipmap or image pyramid
of an image.

A naive approach to the undersampling is to compute all those
texels under the quadrilateral and compute a representative color
value, e.g., the average value of them. This approach, unfortunately,
slows, since it requires us to access many texels and computations.
Instead of this on-demand approach, pre-filtering that pre-filters the
original texture in a way to efficiently handle undersampling has
been more widely used and studied. In this section, we discuss two
approaches, mip mapping and summed area table, for the undersam-
pling problem.

Mipmap or mipmapping is a multi-scale representation for a
texture (or any other types of images) to efficiently handle the under-
sampling issue. Given an input image, a mipmap is composed of a
sequence of images whose U and V resolutions are reduced half over
its higher resolution (Fig. 9.6). As a result, mipmap is also called an
image pyramid. Each low-resolution image is a pre-filtered version of
its higher one.

At runtime when we use the mipmap, we pick a particular image
level among the available image resolutions of the mipmap given
the required texture resolution. If necessary, we can also perform
interpolation between two image resolutions, resulting in tri-linear
interpolation for computing a color for the sampling location. In
whatever cases, we access only a few samples on the mipmap and
get pre-filtered texture values, resulting in faster and better visual
quality.

The memory requirement of using a mipmap is 1
3 , about 33%,

since the total size of using the mipmap is computed as the following:

∞

∑
0

(
1
4

)i
=

1
1 − 1

4
=

4
3

. (9.3)

Fig. 9.5 shows different rendering results w/ linear filtering or



78 rendering

mipmap. By using the mipmap, we get smoother image results over
linear filtering for far-away regions where we minify the geometry.
Again, the mipmap is a fast way of handling the undersampling
problem, but can remove the original edge information.

A reason why the mipmap produces a over-smoothed result is that
the mipmap computes its image pyramid only based on an isotropic
filtering shape, i.e., square shapes. As a result, when we have have
an very elongated quadrilateral shape in the texture space, we cannot
find filtering resolutions along both U and V directions. A solution to
this case of anisotropic filtering is the summed area table.

Summed-area table. A summed-area table is proposed to support
anisotropic filtering, specifically, a rectangular shape, not the squared
shape, on the texture space. Given a texture, T(u, v), its summed-
area table, S(u, v), is computed by summing all the elements whose
elements are smaller than u or v:

S(u, v) = ∑
i≤u∧ j≤v

T(u, v). (9.4)

We then compute the average color value, ca , on a rectangular
regions, e.g., the blue region given by [u0 , u1 ] × [v0 , v1 ] as shown in
Fig. 9.7, as the following:

ca =
T(u1 , v1) − T(u1 , v0) − T(u0 , v1) + T(u0 , v0)

(u1 − u0)(v1 − v0)
. (9.5)

49

Summed-Area Tables
Original texture Summed-area table

Figure 9.7: The left images
show a configuration of the
summed area table, while the
right image shows rendering
results of the summed area ta-
ble and mipmapping. The right
image is created by Denny.

Fig. 9.7 also compares the rendering results computed by the
mipmap and summed-area table. The summed-area table shows
better quality, since it provides anisotropic filtering. Nonetheless, it
has additional runtime and memory overheads over the mipmap.



texture 79

9.4 Approximating Lights

It is easy to paint on images and capture images than constructing
geometry, and thus textures have been widely used for various appli-
cations. In this section, we discuss two techniques, shadow mapping
and environment mapping, of using textures for approximating
complex lights.

Before we move on to them, let us first discuss light maps. Light
maps are images that contain light intensity. We then use these light
maps as textures for adjusting colors of triangles. A simple method
of computing colors with a light map is to multiply the intensity
contained in the light map with the color computed by illumination
or other functions. Fig. 9.8 shows an example of using textures
and light maps. Creating complex lighting effects requires high
computation, and thus pre-computing, also called baking, them in
light maps are still commonly used in many interactive applications.

25

Light Maps in Quake
● Light maps are used to store pre-computed 

illumination

Texture 
Maps

Light 
Maps

Data RGB Intensity

Resolution High Low

Light map 
image by Nick 

Chirkov

Textures Only Textures & Light Maps
Figure 9.8: This shows results
only with textures and both
with textures and light maps
used for a game called Quake.

9.4.1 Shadow Mapping

Shadow is one of fundamental lighting effects that we can see in
daily life, and provide various 3D depth cues. While providing
shadows is important, it is not that easy to efficiently and correctly
generate shadows in rasterization. This problem has been studied
for many decades and shadow mapping as a type of texture map-
ping is proposed for creating realistic rendering results within the
rasterization framework.

Please recall our discussion on the Phong illumination model
(Ch. 8.3). The model has three components of ambient, diffuse, and
specular terms. Unfortunately, diffuse and specular terms do not con-
sider any other objects that block lights from light sources, while the
ambient term is a drastic simplification by using a constant for con-
sidering inter-reflection. Essentially, the Phong illumination model
does not consider the case of having shadows, i.e., the existence of



80 rendering

other objects that block the light. This is mainly attributed since the
Phong illumination model, more importantly, rasterization itself, is a
local model that mainly aims for high efficiency. Shadow mapping is a two pass ren-

dering method to generate shadows
without global and random access on
other objects.

Our challenge is to generate shadows within the rasterization
framework. While considering shadows itself requires us to access
other objects, resulting in global access on various data, we approach
this problem as a two-pass algorithm using shadow mapping. Its
main concept is shown in Fig. 9.9.

50

Depth map 
from light

Shadow Maps

Depth map 
from eye

Figure 9.9: This visualizes the
process of using shadow map-
ping to generate shadows on
the rendering result seen by the
eye.

The problem of the rasterization process is that when we perform
an illumination on a fragment of a triangle, we cannot know whether
the fragment can receive the light energy from a light source. When
we do not receive the light energy due to a blocking object, we add
only the ambient term, since the diffuse and specular terms become
zero. To know whether a fragment can receive the light energy from
a light source, we rasterize the whole scene at the position of the light
source and treat its depth map as a shadow map for the light. This is
the first-pass of generating shadows.

The depth map generated from the light position contains depth
values of visible geometry from the light. We then raster the whole
scene at the viewer’s position, similar to the regular rasterization
process. This is the second pass of our method. A difference in
this second pass compared to the regular rasterization is that we
check whether we can receive the light energy on a fragment that we
generate at the second pass.

To know whether the fragment receives the light energy or not, we
compute its depth from the light position, d l . When d l is bigger than
the stored depth value, d, of the shadow map, we determine that the
fragment cannot receive the light energy and we thus give only the



texture 81

ambient term to the fragment, not the diffuse nor specular terms. Shadows maps are just a type of
textures and thus inherits pros. and
cons. of texture mapping.

While we explain shadow mapping in a concise manner above,
there are a lot of technical issues. Most of them are related to the
oversampling and undersampling that we discussed for texture
mapping; note that the shadow map is another type of textures
and thus inherits issues of texture mapping. Nonetheless, it is
very important to understand how we address a kind of global
illumination, shadow generation, through a texture, the shadow map.

9.4.2 Environment Mapping

In the prior section, we discussed how to generate shadows using
shadow mapping. Another common rendering effect is to support
reflection on mirrors or other metal-like objects. For those models,
we see other objects reflected on such reflecting objects. In other
words, supporting this effect belongs to a type of global illumination
requiring the access to other objects.

50

Environment Maps

View

Spherical 
env. map

ࡾ (ࡾ)۳ Figure 9.10: Two images in the
left visualize how we use the
spherical environment map-
ping, while the right image
shows an example of using the
environment map to simulate
the reflection effect.The rasterization framework also relies upon using another type

of texture mapping, environment mapping, for this reflection effect.
Suppose that we have a view direction on a reflecting object shown
in the gray color in Fig. 9.10. When the object is the specular object,
the reflected ray, ~R, is computed by the Snell’s law (Ch. 8.3). We then
need to access an object along the reflected ray, ~R. Unfortunately, this
is a ray tracing process, and is not efficiently adopted for rasteriza-
tion. An environment map captures sur-

rounding geometry or lights, and can
be used as a texture to approximate
them at runtime.

To enable the reflection efficiently, we introduce environment
mapping, which captures colors of the surrounding environment in
a texture. For environment mapping, we can use different types of
geometry capturing the environment. Examples include sphere, cube
maps, etc. In this chapter, we explain environment mapping based on
a sphere for the sake of the simplicity.

As shown in the middle image of Fig. 9.10, we place a sphere
at the center of the reflection object. We map the sphere into a 2D
texture space; since we can represent the sphere with two angles, θ

and φ, the 2D texture space can be constructed by these two angles.
We then generate a ray starting from the center of the sphere to each
texel of the sphere and encode the color of the ray at that texel; we



82 rendering

use a projection instead of ray tracing for efficiently building the
map.

At runtime, when we raster a triangle of the reflecting model, we
know the viewing direction, and thus identify a texel ID that the
reflection ray from the center of the sphere, E(~R), will access. Unfor-
tunately, since the environment map is generated at the center of the
object, not each location that we have reflection, there are visual gaps
between the computed one and the ground truth. Nonetheless, we
can support an approximate reflection by using an additional texture.

The environment map is also used to encode complex types of
lights and used for providing realistic lighting for rasterization.

9.5 Approximating Geometry

Textures are also used to approximate complicated geometry. Es-
pecially, when we have many geometry, it requires long running
computation time with high memory requirement. A single or multi-
ple textures are effective ways of approximating them with reduced
running and memory overheads.

35

Bump Mapping
●Modifies the normal not the actual 

geometry 
● Texture treated as a heightfield
● Partial derivatives used to change the normal
● Causes surface to appear deformed by the 

heightfield

+ =

Figure 9.11: We use the bump
map (shown in the middle) to
adjust normals of the geometry
during the rasterization, to
enrich the appearance of the
model (shown in the right.)
Since we do not change the
actual geometry, we can see
that the geometry is unchanged
at its silhouette.

Bump and normal mapping. Bump mapping modifies normals
of geometry, not the actual geometry. The texture used for bump
mapping encodes an amount of changes to normals of the geometry
(Fig. 9.11). This is an approximate, yet effective way of enriching
the geometry. Nonetheless, we can observe that the actual geometry
is not aligned with the adjusted normals, especially when we look
at the silhouette of the object. Normal mapping is similar to bump
mapping, but the normal map directly gives the normal that we use
on top of a simple geometry (Fig. 9.12).

Displacement mapping. Unlike bump and normal mapping, dis-
placement mapping adjusts the actual geometry based on a provided
displacement map. A common usage of displacement mapping is
to encode a height change on the displacement map and adjust the
geometry along its normal direction according to the height. Adjust-
ing the geometry requires tessellation, subdividing the geometry into



texture 83

Figure 9.12: We can provide
detailed look on a simple geom-
etry by using normal mapping.
The image is created by Paolo
Cignoni.

smaller patches and adjusting them to accommodate the given height
(Fig. 9.13).

Figure 9.13: Displacement
mapping changes the actual
geometry according to its map
unlike bump mapping. To en-
able displacement mapping, we
tessellate the initial geometry
into smaller ones.

We covered only a few examples of approximating geometry.
Other notable examples include 3D or solid textures representing 3D
shapes and billboards, which are a set of 2D textures representing
complex geometry (e.g., trees).




	Illumination and Shading
	How can we see objects?
	Bi-Directional Reflectance Distribution Function
	Phong Illumination Model
	Shading
	Common Questions


