
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Distance Encoded Product Quantization
for Approximate K-Nearest Neighbor Search

in High-Dimensional Space
Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon

Abstract—Approximate K-nearest neighbor search is a fundamental problem in computer science. The problem is especially
important for high-dimensional and large-scale data. Recently, many techniques encoding high-dimensional data to compact codes
have been proposed. The product quantization and its variations that encode the cluster index in each subspace have been shown to
provide impressive accuracy. In this paper, we explore a simple question: is it best to use all the bit-budget for encoding a cluster
index? We have found that as data points are located farther away from the cluster centers, the error of estimated distance becomes
larger. To address this issue, we propose a novel compact code representation that encodes both the cluster index and quantized
distance between a point and its cluster center in each subspace by distributing the bit-budget. We also propose two distance
estimators tailored to our representation. We further extend our method to encode global residual distances in the original space. We
have evaluated our proposed methods on benchmarks consisting of GIST, VLAD, and CNN features. Our extensive experiments show
that the proposed methods significantly and consistently improve the search accuracy over other tested techniques. This result is
achieved mainly because our methods accurately estimate distances.

Index Terms—Vector quantization, nearest neighbor search, image retrieval, compact code, high-dimensional search

F

1 INTRODUCTION

A PPROXIMATE K-Nearest Neighbor (ANN) search has
been an active research problem across many fields

in computer science including computer vision, machine
learning, computational geometry, data mining, and infor-
mation retrieval. The problem is especially important for
high-dimensional and large-scale cases due to the efficiency
requirement by many practical applications. In this paper
we are mainly interested in compute vision applications
such as image/video retrieval, feature matching, and image
classification. Thus we restrict our discussion on approx-
imate nearest neighbor techniques tailored to computer
vision.

Conventional ANN search methods based on hierarchi-
cal structures [1], [2] can be inefficient in terms of both
computational and memory costs, when the size of database
is large and the dimensionality of the feature space is high,
as is the case for web-scale image retrieval. Most of recent
ANN search techniques for high-dimensional data in com-
puter vision, machine learning, and related literatures are
encoding data to compact codes based on hashing [3] or vec-
tor quantization [4]. Hashing approaches assign similarity-
preserving binary codes to data. The major advantage of
hashing techniques over vector quantization methods is that
neighbors can be identified by accessing similar codes or
near buckets from the query. However, hashing techniques
do not accurately estimate the actual distances among data

• Jae-Pil Heo is with Sungkyunkwan University, South Korea. E-mail:
jaepilheo@gmail.com

• Zhe Lin is with Adobe Research. E-mail: zlin@adobe.com
• Sung-Eui Yoon is with Korea Advanced Institute of Science and Technol-

ogy (KAIST), South Korea. E-mail: sungeui@kaist.edu

Manuscript received mm/dd/yyyy.

since they are based on the hamming distance. On the other
hand, vector quantization techniques approximate data as
codeword vectors (i.e. cluster centers). Those dictionary vec-
tors are utilized for distance estimation. In vector quantiza-
tion methods, the estimated distances are more accurate as
larger dictionary we use. However, using many codewords
require higher computational and memory costs.

The product quantization (PQ) [5] can efficiently define
exponentially large number of codewords with small mem-
ory footprint and computational costs. PQ divides the fea-
ture space into several disjoint subspaces, and each subspace
is partitioned into clusters independently. Specifically, PQ
can define kM codewords when we utilizeM subspaces and
quantize each subspace into k clusters. The space complex-
ity to store such codewords is O(kD) where D stands for
the dimensionality of data. Furthermore, distance between
two data points can be computed in O(M) via precomputed
look-up tables. PQ and its improvements [6], [7] have shown
the state-of-the-art performance in ANN search problem.

PQ can effectively generate many codewords based on
the Cartesian product of subspaces and thereby reduce the
quantization distortion. Nonetheless, we have found that
their approach shows marginal accuracy improvement in
practice, as we increase the number of clusters in each
subspace. Furthermore, we have observed that the error of
estimated distances tend to be larger as the data points are
farther from the codewords (Sec. 3.2). This is mainly because
they encode only the clusters containing data points, but are
not designed to consider how far data points are located
away from cluster centers.

In this paper we take account of the residual distance
between a data point and its corresponding cluster center.
Those residual distances are encoded in the compact codes



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011
1100

1101

1110

1111

0000
0001
0010

0011

0100
0101
0110 0111

1000
1001
1010

1011

1100
1101
1110

1111

PQ DPQ

(a) PQ

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011
1100

1101

1110

1111

0000
0001
0010

0011

0100
0101
0110 0111

1000
1001
1010

1011

1100
1101
1110

1111

PQ DPQ

(b) DPQ

Fig. 1. The left and right figures show toy examples of partitioned
space and assigned compact codes for PQ and DPQ, respectively, when
using 4 bit codes. Our method allocates first two bits for encoding a
cluster index and another underlined two bits for quantized distances
from cluster centers, while PQ utilizes all the bits for encoding a cluster
index.

and utilized when estimating distances among data points.
The contributions of this paper are summarized as follows:

1) We propose a new compact code representation for
high-dimensional data, Distance encoded Product
Quantization (DPQ). We follow exactly the same
procedure as in PQ to generate subspaces, quantize
them with unsupervised clustering (i.e. k-means),
and encode each data point with the index of its
nearest cluster center in each subspace. The novelty
of our method lies in that in addition to encoding
the cluster index, we use additional bits to quantize
the residual distance from the data point to its
closest cluster center. (Sec. 4.1)

2) We provide two different distance estimators, statis-
tics and geometry based distance estimators, tai-
lored to our encoding scheme. Especially, our ge-
ometry based distance estimator is based on novel
geometric reasoning for high-dimensional space.
(Sec. 4.2)

3) We further extend DPQ to Global Distance en-
coded Product Quantization (GDPQ) that encodes
the global residual distances in the original feature
space instead of subspaces. (Sec. 5)

Our method is independent from subspace and code-
word optimization algorithms. In other words, we can
take advantage of advances in PQ-like vector quantization
techniques including PQ itself, OPQ [6], and LOPQ [8]. In
this paper, we specifically apply our method to PQ and
OPQ to validate merits of encoding residual distances and
utilizing them in the distance estimation. We have evalu-
ated our method on four benchmarks consisting of popu-
lar and recent image descriptors, GIST, VLAD, and CNN
features (Sec. 6). Experimental results show that our DPQ
with new distance estimators significantly and consistently
outperforms the baseline methods on tested benchmarks.
Furthermore, GDPQ provides even better results than the
baselines and DPQ. These improvements are mainly caused
by more accurately estimated distances. Overall our method
is simple, but results in significant performance improve-
ments over baseline PQ-like vector quantization methods.

1݀݅-ܥ

1݀݅-ܥ 1݀݅-ܦ

݀݅-ܦ

…
…

PQ

DPQ

GDPQ 1݀݅-ܥ …

1st subspace

2݀݅-ܥ

2݀݅-ܥ 2݀݅-ܦ

2݀݅-ܥ

2nd subspace

ܯ݀݅-ܥ

ܯ݀݅-ܥ ݀݅-ܦ ܯ

ܯ݀݅-ܥ

thܯ subspace

Fig. 2. This figure shows compact codes computed by Product Quanti-
zation (PQ) [5], Distance encoded Product Quantization (DPQ, Sec. 4),
and Global Distance encoded Product Quantization (GDPQ, Sec. 5). In
each subspace, DPQ encodes the cluster index (C-idi) and quantized
distance (D-idi) between a data point and its corresponding cluster
center, while PQ encodes only the cluster index. On the other hands,
GDPQ encodes quantized global residual distances in the original space
instead of subspaces.

2 RELATED WORK

There have been many approaches that utilize hierarchi-
cal data structures for ANN search. Notable examples of
such tree structures based on the recursive space parti-
tioning include kd-trees [1], [9], R-trees [2], Vantage Point
trees [10] and hierarchical k-means trees [11]. However,
most of those techniques can provide even slower search
performance compared to exhaustive scan especially for
high-dimensional data. Furthermore, they do not provide
compact data representation, and thus are less effective for
handling billion-scale problems.

Recently compact code representations have been ac-
tively studied, since they provide a high compression rate
by encoding high-dimensional data into compact codes,
and fast distance (i.e. similarity) computation by simple
bit-string operations or a precomputed lookup table. We
categorize those compact code representation techniques
into two categories: hashing and vector quantization based
approaches.

Hashing methods project high-dimensional data to the
Hamming space. Data points are encoded as similarity-
preserving binary codes and neighbors can be identified
by traversing similar binary codes or near hash buckets.
These techniques can be categorized further into data-
independent and data-dependent methods. The popular
data-independent hashing techniques are the Locality Sensi-
tive Hashing (LSH) [12] and its variations [13], [14], [15]. On
the other hand, data-dependent hashing methods consider
the data distribution for achieving higher accuracy. Notable
examples include [16], [17], [18], [19]. Most of the hashing
methods mentioned above estimate the distance among
data by the Hamming distance which can be efficiently
computed. The hamming distances, however, only give the
discretized ranking but do not provide precise distances by
nature.

The quantization based methods are closely related to
clustering. In these approaches, a compact code of a data
point encodes the index of a cluster (i.e. codeword index)
containing the data point [20], [21]. Product Quantization
(PQ) [5] decomposes the original data space into lower-
dimensional subspaces and quantizes each subspace sepa-
rately using k-means clustering. It then computes a compact
code as a concatenation of cluster indices, encoded in sub-
spaces. Ge et al. have proposed Optimized PQ (OPQ) [6] that
optimizes PQ by minimizing quantization distortions with



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

respect to the space decomposition and codebook vectors.
Norouzi and Fleet have presented Cartesian k-means [7]
that also reduces the quantization distortions of PQ in a
similar manner to OPQ. Locally Optimized OPQ (LOPQ) [8]
has been proposed to optimize a OPQ for each region
defined by a coarse quantizer.

The residual quantization (RQ) [22], [23] is a recursive
quantization method working in the original data space.
The residual vector produced in the previous quantization
step is further quantized in the next step. A data point is
then approximated as a sum of codeword vectors. The main
difference between our proposed method and RQ is that we
only encode the residual norms, which are scalar values,
and utilize them in the estimation, while RQ recursively
quantizes the residual vectors. Furthermore, our method can
be combined with RQ to encode the distance between a data
point and its approximation.

Hamming embedding [24] uses an orthogonal projection
and thresholding projected values for computing binary
codes only within a cluster. This approach provides higher
accuracy within each cluster and works for image retrieval.
On the other hand, this method is not designed for ac-
curately measuring distances between points contained in
different clusters.

PQ and its recent improvements achieved state-of-the-art
results in approximate K-nearest neighbor search by signifi-
cantly outperforming those projection-based methods. This
is partially due to fact that PQ leverages the product space
and estimates distances more accurately. However, they
have the problem of diminishing returns with an increasing
number of clusters in each subspace, and they also have
large bias and variances in distance estimation (as discussed
in Sec. 3.2).

Our encoding scheme is based on the product space that
PQ and OPQ are also based on. Unlike PQ and OPQ, our
method encodes quantized distances from data points to
their cluster center for more accurately estimating distances
among points. Note that, our approach is orthogonal to
PQ or its variations that optimize subspaces and codeword
vectors. In other words, our method can be applied to
such PQ-like techniques to provide additional performance
improvements.

3 BACKGROUND AND MOTIVATIONS

3.1 Background
Let us define notations that we will use throughout this
paper. We use X = {x1, ..., xN}, xi ∈ RD to denote a set
of N data points in a D-dimensional space. A compact
code corresponding to each data point xi is defined by
bi = {0, 1}L, where L is the length of the code. We denote
d(x, y) as the Euclidean distance ‖ x− y ‖.

We first briefly review Product Quantization (PQ) [5]
that our work is built upon and its two distance estimators.
Let us denote a point x ∈ RD as the concatenation of M
sub-vectors, x = [x1, ..., xM ]. For simplicity, we assume that
the dimensionality of data D is divisible by the number of
subspaces M . In PQ, points in each ith subspace is encoded
by L/M bits code and we thus haveNK(= 2L/M ) codebook
vectors, {ci1, ..., ciNK

}, where those codebook vectors are
cluster centroids computed by k-means clustering [25], [26].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

500

1000

1500

2000

2500

3000

3500

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(a) GIST-1M-960D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

500

1000

1500

2000

2500

3000

3500

32 64 128 256

Q
u

an
ti

za
ti

o
n

 D
is

to
rt

io
n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(b) CNN-1M-4096D

Fig. 3. This figure shows the empirical quantization distortions as a
function of the number of clusters (=NK ) in each subspace on (a) 960-
dimensional GIST descriptors and (b) 4096-dimensional CNN features.
M indicates the number of subspaces used. Details about the datasets
are given in Sec. 6.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256

Q
ua

nt
iz

at
io

n 
D

is
to

rt
io

n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

64 128 256

D
is

ta
nc

e 
Er

ro
r (

SD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16) 0

0.1

0.2

0.3

0.4

64 128 256

D
is

ta
nc

e 
Er

ro
r (

AD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

64 128 256

10
0-

N
N

 m
AP

 (S
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

0.5

64 128 256

10
0-

N
N

 m
AP

 (A
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(a) Distance Error (SD)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256

Q
ua

nt
iz

at
io

n 
D

is
to

rt
io

n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

64 128 256

D
is

ta
nc

e 
Er

ro
r (

SD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16) 0

0.1

0.2

0.3

0.4

64 128 256

D
is

ta
nc

e 
Er

ro
r (

AD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

64 128 256

10
0-

N
N

 m
AP

 (S
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

0.5

64 128 256

10
0-

N
N

 m
AP

 (A
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(b) Distance Error (AD)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256

Q
ua

nt
iz

at
io

n 
D

is
to

rt
io

n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

64 128 256

D
is

ta
nc

e 
Er

ro
r (

SD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16) 0

0.1

0.2

0.3

0.4

64 128 256

D
is

ta
nc

e 
Er

ro
r (

AD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

64 128 256

10
0-

N
N

 m
AP

 (S
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

0.5

64 128 256

10
0-

N
N

 m
AP

 (A
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(c) 100-NN mAP (SD)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 256

Q
ua

nt
iz

at
io

n 
D

is
to

rt
io

n

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.2

0.4

0.6

0.8

64 128 256

D
is

ta
nc

e 
Er

ro
r (

SD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16) 0

0.1

0.2

0.3

0.4

64 128 256

D
is

ta
nc

e 
Er

ro
r (

AD
)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

64 128 256

10
0-

N
N

 m
AP

 (S
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

0

0.1

0.2

0.3

0.4

0.5

64 128 256

10
0-

N
N

 m
AP

 (A
D

)

Number of Centers

PQ (M=4) OPQ (M=4)
PQ (M=8) OPQ (M=8)
PQ (M=16) OPQ (M=16)

(d) 100-NN mAP (AD)

Fig. 4. (a) and (b) show the error of estimated symmetric distance
(SD) and asymmetric distance (AD) with various number of subspaces,
respectively. We randomly sample 100K pairs from the GIST-1M-960D
dataset in the experiment. (c) and (d) similarly show mAP curves of 100-
nearest neighbor search with SD and AD, respectively. M is the number
of subspaces used.

A vector quantizer qi(xi) given ith subspace is defined
as following:

qi(xi) = argmin
cij

d(xi, cij).

The sub-code, bi, computed from ith subspace elements
of x encodes an index of the nearest cluster:

bi = B
(
argmin

j
d(xi, cij),

L

M

)
, (1)

where the function B(v, l) converts an integer v − 1 to a
binary string with a length l; e.g., B(6, 4) = 0101. PQ then
maps x to the concatenation of sub-codes, b = [b1, ..., bM ].

PQ uses two distance estimation schemes: Symmetric
Distance (SD) and Asymmetric Distance (AD). SD is used
when both vectors x and y are encoded, and is defined as
following:

dPQ
SD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), qi(y)

)2
. (2)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 5. This figure visualizes errors of the symmetric distances (SD). We
sample two random points, x and y, in a randomly selected subspace.
The x-axis indicates the distance between xi and its corresponding
cluster center qi(xi), and y-axis shows similar information for y. The
vertical axis is the difference between the actual distance d(xi, yi)
and its estimated distance d(qi(xi), qi(yi)). The errors of estimated
distances tend to be higher as the distance between data points and
their corresponding cluster centers becomes larger. We use OPQ with
M = 8 and NK = 256 to define subspaces and clusters on the GIST-
960D dataset.

On the other hand, AD is used, when only data point x
is encoded, but query y is not, and is defined as following:

dPQ
AD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), y

)2
. (3)

Both SD and AD computations are accelerated by uti-
lizing look-up tables. In case of SD, we construct a three
dimensional table TSD(i, j, k) = d(cij , c

i
k)

2. Once we have
the look-up table TSD we can compute a squared SD by
accessing and adding M elements in the table. Similarly, a
two dimensional look-up table TAD(y, i, j) for a particular
query y can computed as TAD(y, i, j) = d(yi, cij)

2 and
utilized in distance estimation.

3.2 Motivations
Quantization distortion has been identified to be closely re-
lated to the search accuracy [6]. OPQ directly aims to reduce
the quantization distortion of PQ by solving Orthogonal
Procrustes problem [17], [27]. In general we can reduce the
quantization distortion by utilizing longer codes, i.e., having
more codewords. In particular, we have studied the rela-
tionship between the number of clusters and quantization
distortion, ξ, which is defined as follows [5], [6]:

ξ =
1

N

N∑
j=1

M∑
i=1

d
(
xij , q

i(xij)
)2
.

We experimentally measure quantization distortions as a
function of the number of clusters (Fig. 3). As expected, the
quantization distortion reduces as we have more clusters.
However, we observe that the decreasing rate of the quanti-
zation distortion is marginal with respect to the number of
centers. Similarly we observe the same diminishing return
of having more clusters for the distance estimation and
search accuracy, as shown in Fig. 4.

(a) GIST-1M-960D (b) CNN-1M-4096D

Fig. 6. The same protocol with Fig. 5 is used, however, the asymmetric
distances are investigated on two different datasets. We treat that x
is encoded but y is not. The y-axis indicates the error of asymmetric
distance. Similar to the case of SD, the error of estimated distances
tends to be higher when x is farther from its corresponding cluster
center. The linear correlation coefficient of (a) and (b) are 0.68 and 0.70,
respectively. In this experiment, we have used OPQ with M = 8 and
NK = 256 to define subspaces and clusters.

Once a data point is encoded as a compact code, a
reconstructed position from the code is set as the center of
the corresponding cluster of the code. Distances between
encoded compact codes at the search phase are estimated
only with such center positions. One can easily see that the
error of estimated distances depends on the quantization
distortion. Specifically, it has been shown previously that
the distance is biased and the error is statistically bounded
by two times of the quantization distortion [5]. An error-
corrected version of distance measure which directly takes
account of quantization distortions has also been proposed
in [5], however, it is stated that the error-corrected distance
estimator results in even worse search accuracy.

We have empirically studied a functional relationship
between the errors of estimated distances and the distance of
data points from their corresponding cluster centers (Fig. 5
and 6). We have found that the estimated distances tend to
have higher errors, as data points are further away from
centers of their corresponding clusters.

These results suggest that by reducing quantization dis-
tortions, we can predict the distances between data points
more reliably. Motivated by this, we allocate additional bits
to directly encode the distances of data points from their
corresponding cluster centers in each subspace, instead of
constructing more clusters and encoding data with them.

4 DISTANCE ENCODED PRODUCT QUANTIZATION

In this section we introduce our compact code represen-
tation, Distance-encoded Product Quantization (DPQ), and
two distance estimators tailored to our scheme.

4.1 Our Encoding Scheme
We explain our method and its benefit on top of PQ for the
sake of succinct explanation. Our method can be used with
any vector quantization techniques and can take advantage
of any advanced PQ-like techniques since our method is
independent from the subspace and cordword optimiza-
tion algorithms. For instance, combining our method with
OPQ is straightforward, since we only need to apply an



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

optimized rotation to the input feature space. We use the
term, Distance-encoded OPQ (DOPQ), to call our method
that utilizes subspaces and clusters optimized by OPQ.

Suppose that the code length assigned for encoding
the information in each subspace is L/M bits, where L
and M indicate the overall code length and the number
of subspaces, respectively. In each subspace, our method
encodes the distance of a data point from the center of
its cluster containing the point as well as the index of the
cluster. The distance is identical to the L2-norm of residual
vectors |xi−qi(xi)|. Fig. 1 illustrates a visual example of our
encoding method.

Specifically, we allocate LC bits for encoding the cluster
index to have N ′K = 2LC clusters, and LD bits for the
encoding quantized distance from its cluster center. In order
to quantize the residual norms, we define ND(= 2LD )
different distance thresholds, tij,1, ..., t

i
j,ND

, for cij , the center
of the cluster j in ith subspace. The compact code of a data
point, x, for the ith subspace is then the concatenation of the
nearest center index, ĵ, and the quantized distance index, k̂,
as follows:

bi(xi) = [ B(ĵ, LC) B(k̂, LD) ],

where
ĵ = argmin

j
d(xi, cij),

and k̂ is the value satisfying the following:

ti
ĵ,k̂−1 ≤ d(x

i, ci
ĵ
) < ti

ĵ,k̂
.

tij,0 and tij,ND
are defined as 0 and∞, respectively. We also

use P i
j,k to denote a set of data points that are encoded by

the cluster j with threshold k in ith subspace, as follows:

P i
j,k = {xi|j = argmin

v
d(xi, civ) and tij,k−1 ≤ d(xi, cij) < tij,k}

We use P i
j to denote the union of P i

j,1, ... , P i
j,ND

:

P i
j =

ND⋃
k=1

P i
j,k

Computing thresholds
In order to choose distance thresholds determining ND

disjoint regions within each cluster, we identify points P i
j

contained in the cluster j in ith subspace. We then construct
distances of those points from the cluster center, cij . For
choosing thresholds, we first compute ND different regions
in a way that we minimize the variances of distances of
points contained in each region, i.e., minimizing the within-
region variance.

It is also important to balance the number of points
contained in each region. To achieve this, we enforce the
number of points in each P i

j,k to be between (|P i
j |/ND −

|P i
j |/N2

D) and (|P i
j |/ND + |P i

j |/N2
D); in this equation we

use N2
D to achieve a near-balance among the numbers of

points allocated to regions. Each cluster has a small number
of points, and the search space of the candidate set for com-
puting thresholds given the balancing criterion are small. As
a result, we can efficiently find thresholds that minimize the
within-region variance even by exhaustively searching the
optimal one. We can also use balanced-clustering techniques

such as [28] for accelerating the aforementioned process of
computing thresholds.

Alternatively, a simpler approach that equally distributes
the distances into bins (|P i

j,1| = ... = |P i
j,ND
|) can be

utilized. We found that this simple method provides a
slightly lower search accuracy than the aforementioned
variance based optimization with small ND , but provides
comparable performance with large ND .

The time complexity to encode a data point of PQ is
O(M D

MNK) = O(DNK) [29]. The typical parameter of NK

is 256 [5], [6]. On the other hand, DPQ has a time complexity
of O

(
M( D

MN ′K + ND)
)
= O(DN ′K + MND). Since DPQ

produces the same lengthly compact code with PQ when
N ′KND = NK , we typically set two parameters (N ′K , ND)
as (128, 2) or (64, 4). As a result, in such typical settings our
encoding method has a lower complexity compared to PQ
(e.g. PQ: O(256D), DPQ: O(128D+2M)). In practice, DPQ
has shown about two times faster encoding speed compared
to PQ (Sec. 6).

4.2 Distance Estimators
We propose two distance estimators, statistics and geometry
based estimators specialized to our compact code represen-
tation.

4.2.1 Statistics based distance estimator
Jegou et al. [5] have discussed the quantization distortion
of each cluster and suggested error corrected versions of
Symmetric Distance (SD) and Asymmetric Distance (AD).
Those distance estimators use the quantization distortion of
each cluster for the error correction.

For AD, we start with the following distance estimator,
Error-Corrected AD (ECAD), considering the quantization
distortion of the clusters containing x:

dPQ
ECAD(x, y)

2
= dPQ

AD(x, y)
2
+

M∑
i=1

ξij(x
i), (4)

where ξij(x
i) is a pre-computed error correcting term for the

cluster j containing xi. The error correcting term ξij(·) is
defined as the average distortion of the cluster j in the ith

subspace:

ξij(x
i) =

1

|P i
j |

|P i
j |∑

w=1

d(pw, c
i
j)

2,

where pw is wth data point of P i
j .

We can easily extend these error-corrected distance met-
rics to our encoding scheme. For our method we define a
new error correcting term, ξij,k(x

i), with xi ∈ P i
j,k, which

contains points in the kth region of the cluster j in the ith

subspace:

ξij,k(x
i) =

1

|P i
j,k|

|P i
j,k|∑

w=1

d(pw, c
i
j)

2. (5)

We can similarly define an Error-Corrected distance
estimator for SD (ECSD) and AD (ECAD) with the error
correcting terms:

dDPQ
ECSD(x, y)

2
= dPQ

AD(x, y)
2
+

M∑
i=1

ξij,k(x
i) +

M∑
i=1

ξij,k(y
i) (6)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

-0.4 -0.2 0 0.2 0.4
Difference: estimator - d(x,y)

0

0.01

0.02

0.03

0.04

0.05

E
m

pi
ric

al
 P

D
F

PQ
OPQ
DPQ
DOPQ

(a) GIST-1M-960D

-20 -15 -10 -5 0 5 10 15 20
Difference: estimator - d(x,y)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
m

pi
ric

al
 P

D
F

PQ
OPQ
DPQ
DOPQ

(b) CNN-1M-4096D

Fig. 7. This figure shows the distribution of differences from the ground-
truth distances to results estimated by the error corrected version
of asymmetric distance estimators (ECAD) on two different datasets.
Specifically, PQ and OPQ used Eq. 4), and DPQ and DOPQ used Eq. 7.
Our encoding scheme and distance estimator provide lower bias and
variance in distance estimation. The values of bias and variance are
available in Table. 1. We draw 100K pairs of samples randomly chosen
from each dataset. All the tested methods utilized 64 bit compact codes.
PQ and OPQ used M = 8 and NK = 256 while DPQ and DOPQ used
M = 8, N ′

K = 128, and ND = 2. (Best viewed in color).

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Difference: estimator - d(x,y)

0

0.01

0.02

0.03

0.04

0.05

0.06

E
m

pi
ric

al
 P

D
F

PQ
OPQ
DPQ
DOPQ

(a) GIST-1M-960D

-40 -30 -20 -10 0 10 20 30 40
Difference: estimator - d(x,y)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
m

pi
ric

al
 P

D
F

PQ
OPQ
DPQ
DOPQ

(b) CNN-1M-4096D

Fig. 8. The same protocol with Fig. 7 but different distance estima-
tors are investigated. PQ/OPQ used the asymmetric distance estimator
(Eq. 3), and DPQ/DOPQ used our geometry based asymmetric distance
estimator (Eq. 12). PQ and OPQ with AD have significantly high biases
and variances in distance estimation. In contrast, DPQ and DOPQ with
GMAD provide a negligible bias with much smaller variances compuared
to PQ or OPQ. Such bias and variance values are available in Table. 1.
(Best viewed in color).

dDPQ
ECAD(x, y)

2
= dPQ

AD(x, y)
2
+

M∑
i=1

ξij,k(x
i). (7)

Interestingly, [5] reported that the error-corrected dis-
tance estimators did not improve accuracy over estimator
without the error correcting terms, mainly because the error-
corrected distance metrics have higher variances. In con-
trast, our encoding scheme with our error-correcting terms
(Eq. 5) shows higher accuracy over ours without the terms.
In order to identify reasons why the similar error-correcting
terms result in contrasting results between our encoding
scheme and PQ, we have measured the bias and variance
of these two distance estimators. As can be seen in Fig. 7
and Table. 1, the variance and bias of our error-corrected
distance metric are reduced from those of PQ and OPQ.
Since our encoding scheme quantizes the distance of a data
point from its corresponding cluster, our error correcting

Dataset GIST-1M-960D

Distance ECAD AD/GMAD

Bias Variance Bias Variance

PQ 0.0091 0.0143 -0.2707 0.0238

OPQ 0.0107 0.0107 -0.1805 0.0151

DPQ 0.0079 0.0109 -0.0061 0.0120

DOPQ 0.0075 0.0074 -0.0055 0.0085

GDPQ - - 0.0062 0.0074

GDOPQ - - 0.0037 0.0045

Dataset CNN-1M-4096D

Distance ECAD AD/GMAD

Bias Variance Bias Variance

PQ 0.3265 27.9472 -17.2540 38.5955

OPQ 0.4155 20.3692 -12.8942 27.2969

DPQ 0.2448 15.4019 -0.2670 17.3223

DOPQ 0.2793 11.5191 -0.2474 13.3204

GDPQ - - 0.1528 8.4015

GDOPQ - - 0.2028 5.7056

TABLE 1
This table shows empirically measured biases and variances of

differences between exact distances and results estimated by various
distance estimators. Note that, GDPQ and GDOPQ stand for our new
compact code representations that encode global residual norms built
upon subspaces and codeword vectors computed by PQ and OPQ,

respectively (Sec. 5).The empirical distributions regarding to this table
are plotted in Fig. 7, Fig. 8, and Fig. 12.

term (Eq. 5) reduces the bias and, more importantly, the
variance of the distance estimates effectively.

4.2.2 Geometry based distance estimator
We now propose a novel geometric approach to develop a
distance estimator for our encoding scheme. Suppose that
two high dimensional points x and y are randomly chosen
on the surfaces of two hyper-spheres centered at cx and
cy , respectively, with rx and ry radii (Fig. 9). Given these
geometric configurations, the vector x − y is reformulated
as:

x− y = (cx − cy) + (x− cx) + (cy − y). (8)

Our goal is to estimate the length of the vector x − y with
available information within our encoding scheme.

As the dimension of a space goes higher, the surface
area of the hyper-sphere becomes closer to the length of its
equator. One may find this is counter-intuitive, but this has
been proved for high dimensional spaces [30], [31]. Given
a D-dimensional hyper-sphere, a cross section of the hyper-
sphere against a horizontal hyperplane is D−1 dimensional
hyper-sphere. The length of the cross section is longest in the
equator. It then exponentially decreases with a function of
D − 1 degree, as the cross section gets closer to the north
pole. As a result, as we have a higher dimensional space,
the length of the equator takes a more dominant factor in
the surface area of the hyper-sphere.

Given those x and y points, we rotate our randomly
chosen points such that x is located at the north pole.
By applying the above theorem, we have a higher prob-
ability that another point y is located on the equator of
the rotated hyper-sphere, as we have higher dimensional



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

݀ሺݔ, ݔሻݕ ݕ

ܿ௬ܿ௫

݀ሺܿ௫, ܿ௬ሻ

௫ݎ ௬ݎ

Fig. 9. This figure shows two points x and y on the hyper-spheres
centered at cx and cy respectively. rx and ry represent the radii of
hyper-spheres.

60 75 90 105 120
Angle (degrees)

0

0.005

0.01

0.015

0.02

0.025

E
m

pi
ric

al
 P

D
F

GIST  (960-D)
VLAD (2048-D)
CNN  (4096-D)

(a) Original Space

60 75 90 105 120
Angle (degrees)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
E

m
pi

ric
al

 P
D

F

GIST  (120-D)
VLAD (256-D)
CNN  (512-D)

(b) Subspace

Fig. 10. (a) shows empirical distributions of an angle between two
vectors x − q(x) and y − q(x) in three different benchmarks, where
100K (x, y) pairs are randomly sampled and q(·) is a vector quantizer.
(b) shows the distribution in the subspaces constructed by OPQ with
M = 8, NK = 256.

space. As a result, we can conclude that it is highly likely
that two vectors x − cx and y − cy are orthogonal, when
these data points are in a high-dimensional space. Similarly,
we can show that these two vectors are also orthogonal
to another vector cy − cx. We have also experimentally
checked its validity with three benchmarks consisting of
960 dimensional GIST, 2048 dimensional VLAD, and 4096
dimensional CNN features. For this we have used 100K
pairs of samples (xi, yi) from each dataset and measured the
angles between xi−q(xi) and yi−q(xi). The empirical prob-
ability distribution functions are shown in Fig. 10(a). The
average angles and standard deviations on GIST, VLAD,
and deep descriptors are (89.5◦ ± 7.7◦), (89.9◦ ± 5.0◦), and
(89.4◦ ± 4.7◦), respectively. We also have performed the
same experiment on the subspace defined by OPQ with
(M = 8, NK = 256) and its results is shown in Fig. 10(b). In
subspaces whose dimensionality is 1/8 of the original space,
the average angles and standard deviations on GIST, VLAD,
and deep descriptors are (89.7◦±11.7◦), (89.5◦±8.1◦), and
(89.2◦ ± 8.0◦), respectively. Note that, standard deviations
on synthetic points from uniform distributions in 3, 10, 100,
and 1000 dimensional spaces are 39.7, 17.5, 5.6, and 1.8,
respectively.

Since cx − cy , x − cx, and cy − y are highly likely to
be mutually orthogonal in a high-dimensional space, the
squared magnitude of the vector x− y can be approximated
as follows:

‖ x− y ‖2=‖ (cx − cy) + (x− cx) + (cy − y) ‖2

≈‖cx − cy‖2 + ‖x− cx‖2 + ‖cy − y‖2 . (9)

The first term, ‖cx−cy‖2, is precomputed as the distance
between different cluster centers. The second and third

Symmetric Distance Asymmetric Distance

ݔ

ݍ ݔ

ೣ,ೣݎ


,ݎ


ݍ ݕ

݀ሺݍ ݔ , ݍ ݕ ሻ

ݔ

Distance quantization boundary Cluster boundary

ݕ

ݕ ೣ,ೣݎ


݀ሺݍ ݔ , ሻݕ

ݍ ݔ

Fig. 11. This figure illustrates our Geometry-based Symmetric and
Asymmetric distances (GMSD and GMAD).

terms indicate how far x and y are located from the centers
of their corresponding clusters.

In our encoding scheme, the second term can be esti-
mated by using points pw ∈ P i

jx,kx
, where jx and kx are

encoded cluster and threshold indices for x, respectively.
Specifically, the second term is estimated as the average
distance, rijx,kx

, from the center cijx to pw ∈ P i
jx,kx

:

rijx,kx
=

1

|P i
jx,kx
|

|P i
jx,kx

|∑
w=1

d(pw, c
i
jx). (10)

The third term of Eq. 9 is estimated in the same manner
with points in P i

jy,ky
, where jy and ky are chosen cluster

and threshold indices for y.
We then formulate our distance estimator based on Eq. 9

and Eq. 10. Our GeoMetry based squared Symmetric Dis-
tance (GMSD) between two points x and y is defined as:

dDPQ
GMSD(x, y)

2
=

M∑
i=1

(
d
(
q(xi), q(yi)

)2
+rijx,kx

2
+rijy,ky

2)
. (11)

Our GeoMetry based squared Asymmetric Distance
(GMAD) between encoded data x and query y is defined
similarly as:

dDPQ
GMAD(x, y)

2
=

M∑
i=1

(
d
(
q(xi), y)

)2
+ rijx,kx

2)
. (12)

Note that rij,k is precomputed and stored as a lookup table
as a function of i, j, and k values. Fig. 11 illustrates our
GMSD and GMAD.

One may find that our geometry based distance esti-
mator using the average distance (Eq. 10) of points from
their cluster have a similar form to our statistics based
distance estimator using the error correcting term (Eq. 5).
In order to compare two distance estimators, let us first
denote the distance between pw which is wth data point
of P i

j and its corresponding cluster center cij , d(pw, cij), as a
random variable R. The error correcting term (Eq. 5) can be
expressed as:

ξij,k(x
i) =

1

|P i
j,k|

|P i
j,k|∑

w=1

d(pw, c
i
j)

2 = E(R2). (13)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Code Length 16 32 64 128 256

DPQ (ECSD) 0.0518 0.0825 0.1258 0.2112 0.3245

DPQ (GMSD) 0.0551 0.0839 0.1296 0.2166 0.3440

DPQ (ECAD) 0.0795 0.1264 0.2003 0.3354 0.4825

DPQ (GMAD) 0.0817 0.1295 0.2080 0.3448 0.5011

TABLE 2
This table shows the mAPs of DPQ with different distance estimators.

Our geometry based distance estimators, DPQ with GMSD/AD,
improves our statistics based estimator, DPQ with ECSD/AD. The

results are obtained with GIST-1M-960D dataset and the number of
ground truth K=1000.

On the other hand, the squared average distance (Eq. 10) is
written as the follows:

rijx,kx

2
=

(
1

|P i
jx,kx
|

|P i
jx,kx

|∑
w=1

d(pw, c
i
jx)

)2

= {E(R)}2. (14)

The difference between our statistics and geometry based
distance estimator is Var(R), since Var(R) = E(R2) −
{E(R)}2. It is hard to theoretically tell which approach is
better, but these two different estimators consider different
aspects of input data points; the statistics based estimator
considers the variance of distances, while the geometry
based one does not.

Empirically we, however, have observed that the geome-
try based estimator shows better performance, 3.5%, on av-
erage over our statistics based estimator (Table. 2). We, thus,
consistently use the geometry based distance estimators in
the following evaluations in Sec. 6.

Let us analyze time complexities of distance estimation.
For symmetric distances, all the aforementioned distance
estimators have the same time complexity of O(M) needed
to refer the lookup table. In case of asymmetric distance
estimators, PQ and DPQ have time complexities of O(D)
and O(D + M), respectively. Since the dimensionality of
data D is much larger than the number of subspaces M (i.e.
D �M ), such additional computation is negligible. We also
need to construct a lookup table for asymmetric distance
estimation when estimating distances from a query to many
data points. In such case, PQ and DPQ requires the com-
plexity of O(DNK) and O(DN ′K + N ′KND), respectively.
DPQ has a lower computational overhead in constructing a
lookup table for asymmetric distance computation since we
typically set N ′KND = KN and 2N ′K ≤ NK .

5 GLOBAL DISTANCE ENCODED PRODUCT QUAN-
TIZATION

Even though DPQ (and DOPQ) utilizing the residual dis-
tance information outperforms the accuracy of PQ (and
OPQ), there is still a room for improvement. We introduce
the following two cues to further extend DPQ.

First, since we quantize the distance from the nearest
centroid (i.e. residual norm) and use it for distance estima-
tion in each subspace, the error of estimated distances based
on such residual norm quantization is accumulated over the
subspaces. This accumulated error produces inaccuracy in
search results.

-20 -10 0 10 20
Difference: estimator - d(x,y)

0

0.01

0.02

0.03

0.04

0.05

E
m

pi
ric

al
 P

D
F

DPQ
DOPQ
GDPQ
GDOPQ

(a) GIST-1M-960D

-0.4 -0.2 0 0.2 0.4
Difference: estimator - d(x,y)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
m

pi
ric

al
 P

D
F

DPQ
DOPQ
GDPQ
GDOPQ

(b) CNN-1M-4096D

Fig. 12. This figure shows the empirical distribution of differences from
the exact distances to results of the geometry based distance estimator;
graphs are best viewed in colors. GDPQ and GDOPQ provide lower
bias and variances compared to DPQ and DOPQ, respectively. All tested
methods used 64-bit compact codes. Specifically, DPQ and DOPQ used
the same parameters used in Fig. 8, and GDPQ and GDOPQ used M =
8, N ′′

K = 128, and NG
D = 256. The values of biases and variances are

given in Table. 1.

Second, the orthogonality assumption on our geometry
based distance estimation better holds in the original space
compared to the subspace since the dimensionality of the
original space is M times higher than one of the subspace.
We experimentally validated this claim regarding to angles
(Fig. 10 and Sec. 4.2).

Based on the aforementioned motivations, we introduce
Global Distance encoded Product Quantization (GDPQ),
which encodes the residual distances in the original data
space instead of subspaces. Given a product quantizer q(x),
we have an approximated reconstruction q(x) of encoded x
by concatenating the corresponding codeword vectors:

q(x) = [ q1(x1) q2(x2) ... qM (xM ) ]. (15)

GDPQ encodes the distance between a data point x
and its reconstruction, d

(
x, q(x)

)
, to L′D bits. The global

residual norm, d
(
x, q(x)

)
, is quantized with NG

D = 2L
′
D

different distance ranges, tG1 , ..., t
G
NG

D
. Such residual distance

is encoded by an index k̂ that satisfies the following:

tG
k̂−1 ≤ d

(
x, q(x)

)
< tG

k̂
,

where tG1 = 0 and tG
NG

D
= ∞. In order to compute distance

thresholds, we follow the procedure used for DPQ described
in Sec. 4.1.

A compact code of a data point x encoded by GDPQ is
a concatenation of cluster indices b1, ..., bM over subspaces
(Eq. 1) computed by a product quantizer and the quantized
global residual distance index k̂ as follows:

bGDPQ = [ b1 b2 ... bM B(k̂, L′D) ].

We define a representative distance ri for a residual
norm range [tGi , t

G
i+1) by computing the average value

within the range:

ri =
1

|Si|
∑
s∈Si

d
(
s, q(s)

)
, (16)

where

Si = {x|tGi ≤ d
(
x, q(x)

)
< tGi+1 and x ∈ X}. (17)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

The symmetric and asymmetric distance estimators for
GDPQ are then defined by extended from our geometry
based estimators:

dGDPQ
SD (x, y)

2
=

M∑
i=1

d
(
q(xi), q(yi)

)
)
2
+ rix

2
+ riy

2
, (18)

dGDPQ
AD (x, y)

2
=

M∑
i=1

d
(
q(xi), y)

)2
+ rix

2
, (19)

where ix and iy denote the global residual norm index of x
and y, respectively.

We have empirically studied the error of estimated dis-
tances produced by GDPQ and GDOPQ. As shown in Fig. 12
and Table. 1, encoding global residual norms and utilizing
in distance estimation significantly reduced both biases and
variances of errors of the estimated distances. GDOPQ,
especially, provided the lowest variance and bias among all
the tested methods. Note that, our statistics based distance
estimator is not able to be extended for GDPQ, since it is
impractical to use the error correcting terms in the original
data space. Specifically, we need to precompute and store
N ′′K

M
NG

D = 2L different error correcting terms.
The time complexity of GDPQ to encode a data in D-

dimensional space is O(M D
MN ′′K +NG

D ) = O(DN ′′K +NG
D ).

For 64 bits encoding, we suggest to use M = 8, N ′′K = 128,
and NG

D = 256 (Table. 3). In this setting, GDPQ requires
O(128D + 256) time which is about two times smaller than
PQ whose complexity isO(256D). A distance estimation via
precomputed lookup table has O(M + 1) time complexity
which requires O(1) additional but negligible overhead
compared to PQ. On the other hands, computing a lookup
table for asymmetric distance estimation for a particular
query takes O(DN ′′K) time which is twice faster than PQ
in typical settings of 64 bits encoding.

6 EVALUATION

In this section we evaluate our method for approximate K-
nearest neighbor search and compare its results to the state-
of-the-art techniques.

6.1 Protocol
We evaluate our method on the following benchmarks:

• GIST-1M-960D: One million of 960-dimensional
GIST descriptors [5].

• VLAD-1M-2048D and VLAD-1M-4096D: One mil-
lion of 2048 and 4096-dimensional VLAD de-
scriptors [32]. In order to compute 2048D and
4096D VLAD descriptors, we have aggregated 128-
dimensional SIFT features [33] with 16 and 32 code-
word vectors, respectively.

• CNN-1M-4096D: One million of 4096-dimensional
deep features extracted from the last fully connected
layer (fc7) in the CNN [34].

For all the experiments, we use 1000 queries that do not
have any overlap with the data points. Tested methods are
evaluated on accuracy of K-nearest neighbor search when
K = 100 and K = 1000. The ground truth for each query is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64 128 256

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

DOPQ-2
DOPQ-4
DOPQ-8
DOPQ-16
OPQ

(a) GIST-1M-960D, AD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64 128 256

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

DOPQ-2
DOPQ-4
DOPQ-8
DOPQ-16
OPQ

(b) VLAD-1M-2048D, AD

Fig. 13. Experimental results with respect to the number of distance
quantizations (ND) for DOPQ. The postfix numbers in the method
names indicate the number of distance quantizations ND in each sub-
spaces.

computed by performing the linear scan. The performance
is measured by the mean Average Precision (mAP). To verify
benefits of our method we compare the following methods:

• PQ: Product Quantization [32]
• OPQ: Optimized Product Quantization [6], [29].
• RQ: Residual Quantization [22].
• DPQ: Our method that encodes residual distances in

subspaces (Sec. 4) and using the same subspaces and
clustering method as used for PQ.

• DOPQ: Similar to DPQ but using the subspaces and
clusters optimized by OPQ.

• GDPQ: Our method that encodes global residual
distances in the original space (Sec. 5) and using
subspaces and codeword vectors optimized by PQ.

• GDOPQ: Similar to GDPQ but using subspaces and
codeword vectors optimized by OPQ.

All the methods are implemented in the C++ (Intel
Compiler and MKL library are used). The experiments are
conducted on a machine consisting of 2 Xeon E5-2698 pro-
cessors and 256GB main memory. When measuring times
we use a single thread and the sequential version of MKL.

For all the methods, 100K data points randomly sam-
pled from the dataset are used in the training stage, and
we allow 100 iterations for each k-means clustering. Note
that, in order to train OPQ we perform 50 iterations for
parametric version and remaining 50 iterations for non-
parametric version as suggested in [6], [29].

For PQ and OPQ we use symmetric and asymmetric
distances (Eq. 2 and Eq. 3), which achieved the best accuracy
according to [5], [6]. On the other hand, DPQ and DOPQ use
our geometry based distance estimators (Eq. 11 and Eq. 12).
GDPQ and GDOPQ also use geometry based estimator but
defined in the original feature space (Eq. 18 and Eq. 19).

We assign 8 bits for each subspace for PQ, OPQ, DPQ,
and DOPQ for the code lengths of 16, 32, 64, 128, and 256.
In this configuration PQ and OPQ then have 256 clusters in
each subspace as suggested in [5], [6], [29], and the number
of subspaces M is L/8, where L is the tested code length.
Similarly, we use 8 bits for each quantization step for RQ to
haveNK = 256 codewords, and the number of quantization
steps is set to M(= L/8) as did in [22]. RQ additionally
requires memory footprint to store L2 norms of the data
which is necessary for the distance estimation. We allocate



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

CodeLen 16 20 24 32 36 40 60 64 68 72

(O)PQ, RQ 2, 256 4, 32 4, 64 4, 256 - 8, 32 - 8, 256 - -

D(O)PQ 2, 128, 2 - - 4, 128, 2 - - - 8, 128, 2 - -

GD(O)PQ 2, 64, 16 2, 256, 16 2, 256, 256 4, 128, 16 4, 256, 16 4, 256, 256 8, 128, 16 8, 128, 256 8, 256, 16 8, 256, 256

CodeLen 116 120 128 132 136 228 232 256 260 264

(O)PQ, RQ - - 16, 256 - - - - 32, 256 - -

D(O)PQ - - 16, 128, 2 - - - - 32, 128, 2 - -

GD(O)PQ 16, 128, 16 16, 128, 256 - 16, 256, 16 16, 256, 256 32, 128, 16 32, 128, 256 - 32, 256, 16 32, 256, 256

TABLE 3
Parameters used in the experiments. Each pair of numbers for (O)PQ denotes (M,NK). In case of RQ, each pair is the number of quantization

steps and the number of codewords in each step. Each tuple for D(O)PQ and GD(O)PQ represents (M,N ′
K , ND) and (M,N ′′

K , NG
D ), respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(a) GIST-1M-960D, K=100, Symmetric Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(b) GIST-1M-960D, K=100, Asymmetric Distance

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(c) GIST-1M-960D, K=1000, Symmetric Distance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(d) GIST-1M-960D, K=1000, Asymmetric Distance

Fig. 14. Comparisons on GIST-1M-960D

32 bits for RQ to store such norms, so RQ utilizes L+32 bits
in total. However, we did not include the additional bits that
RQ uses in the experimental results.

In DPQ and DOPQ, we have the parameter LD (the
number of bits) for the distance quantization in each sub-
space. We empirically studied about this parameter and the
experimental results are given in Fig. 13. We observe that
LD = 1 (ND = 2) or LD = 2 (ND = 4) gives reasonable
performance on GIST-1M-960D benchmark. On the other
hand, on VLAD-1M-2048D dataset the results are insensitive
to choice of the parameter LD . We, however, pick LD = 1
for all the following tests for the consistency. In other words,
we use N ′K = 128 centers in each subspaces and ND = 2
distance quantizations for each cluster. Since we have higher
degree of freedom in code length selection with GDPQ
and GDOPQ, we test GDPQ and GDOPQ with varying
code lengths. For instance, GDPQ and GDOPQ are able to
define 60 bits compact code by utilizing M = 8 subspaces,
N ′′K = 128 centers in each subspace, and N ′D = 16 global
residual distance quantizations. The parameters used in the
experiments are available in Table. 3. Note that we also
additionally report the results of PQ and OPQ with code

lengths of 20, 24, and 40 by adjustingM and NK to compare
with GDPQ and GDOPQ. We, however, observe that PQ and
OPQ are most effective among tested configurations when
NK = 256 which is standard setting used in [5], [6], [29].

6.2 Results
Fig. 14, Fig. 15, Fig. 16, and Fig. 17 show mAP curves
of K-nearest neighbor search for the tested methods PQ,
OPQ, DOPQ, and GDOPQ on GIST-1M-960D, VLAD-1M-
2048D, VLAD-1M-4096D and CNN-1M-4096D datasets, re-
spectively. DOPQ consistently shows better results over
OPQ across the code lengths 16, 32, 64, 128, and 256 bits
in all the tested benchmarks. Specifically when we use
64 bits compact codes and asymmetric distances, DOPQ
provides 18%, 104%, 84%, and 16% higher mAPs than OPQ
in 100-nearest neighbor search on GIST-1M-960D, VLAD-
1M-2048D, VLAD-1M-4096D and CNN-1M-4096D, respec-
tively. Similarly such improvements by DOPQ over OPQ
are 23%, 100%, 295%, and 34% in 1000-nearest neighbor
search. GDOPQ shows the highest performance among
tested methods. Specifically GDOPQ provides 56%, 120%,
173%, and 59% higher mAPs over OPQ with 32 bits compact



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(a) VLAD-1M-2048D, K=100, Symmetric Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(b) VLAD-1M-2048D, K=100, Asymmetric Distance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(c) VLAD-1M-2048D, K=1000, Symmetric Distance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(d) VLAD-1M-2048D, K=1000, Asymmetric Distance

Fig. 15. Comparisons on VLAD-1M-2048D

0

0.05

0.1

0.15

0.2

0.25

0.3

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(a) VLAD-1M-4096D, K=100, Symmetric Distance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(b) VLAD-1M-4096D, K=100, Asymmetric Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(c) VLAD-1M-4096D, K=1000, Symmetric Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(d) VLAD-1M-4096D, K=1000, Asymmetric Distance

Fig. 16. Comparisons on VLAD-1M-4096D

codes. Moreover, GDOPQ shows 15%, 32%, 39%, and 7%
higher accuracy compared to DOPQ with 64 bits codes on
four different benchmarks. The experimental results confirm
that encoding the residual distances, especially in the orig-
inal feature space, reduces the errors of distance estimation
and thus significantly improves the search accuracy. The
recall curves for 64 bits encoding are given in Fig. 18.

Given a target accuracy, GDOPQ requires the shortest
code lengths over all the other tested methods. For instance,
GDOPQ requires 68 and 64 bits to achieve the mAP of 0.5 in
1000-nearest neighbor search on GIST-1M-960D and CNN-

1M-4096D respectively, while OPQ needs 128 bits on both
benchmarks. Moreover, GDOPQ achieves the mAP of 0.5
with 40 and 64 bits compact codes on VLAD-1M-2048D and
VLAD-1M-4096D benchmark, respectively

While our proposed methods significantly improve
the performance of OPQ on VLAD-1M-2048D, VLAD-1M-
4096D, and GIST-1M-960D, the improvements on CNN-
1M-4096D are slightly lower than ones we achieved on
the other benchmarks. Since the CNN features used in the
experiments are extracted from a neural network trained
for image classification tasks [34], the features are already



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

0

0.1

0.2

0.3

0.4

0.5

0.6
16 20 24 32 36 40 60 64 68 72 11

6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(a) CNN-1M-4096D, K=100, Symmetric Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
0-

N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(b) CNN-1M-4096D, K=100, Asymmetric Distance

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
OPQ
DOPQ
GDOPQ

(c) CNN-1M-4096D, K=1000, Symmetric Distance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ
OPQ
RQ
DOPQ
GDOPQ

(d) CNN-1M-4096D, K=1000, Asymmetric Distance

Fig. 17. Comparison on CNN-1M-4096D

0

0.2

0.4

0.6

0.8

1

100 500 1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

, A
D

)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(a) GIST-1M-960D, K=100, AD

0

0.2

0.4

0.6

0.8

1

100 500 1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

, A
D

)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(b) VLAD-1M-2048D, K=100, AD

0

0.2

0.4

0.6

0.8

1

100 500 1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

, A
D

)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(c) VLAD-1M-4096D, K=100, AD

0

0.2

0.4

0.6

0.8

1

100 500 1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

, A
D

)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(d) CNN-1M-4096D, K=100, AD

0

0.2

0.4

0.6

0.8

1

1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

0,
 A

D
)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(e) GIST-1M-960D, K=1000, AD

0

0.2

0.4

0.6

0.8

1

1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

0,
 A

D
)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(f) VLAD-1M-2048D, K=1000, AD

0

0.2

0.4

0.6

0.8

1

1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

0,
 A

D
)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(g) VLAD-1M-4096D, K=1000, AD

0

0.2

0.4

0.6

0.8

1

1K 5K 10K 50K 100K

R
ec

al
l@

R
 (K

=1
00

0,
 A

D
)

Num. Retrieved Data (R)

PQ
OPQ
RQ
DOPQ
GDOPQ

(h) CNN-1M-4096D, K=1000, AD

Fig. 18. Recall curves with 64 bits compact codes.

well-clustered than GIST or VLAD vectors. We observe
that using the residual distances is less effective in such
data distribution compared to unstructured data. The per-
formance improvements on CNN features are, however,
still noticeable. Moreover, our method interestingly achieve
higher improvements on CNN features when we retrieve
more neighbors (i.e. larger K in K-nearest neighbor search).
Specifically the accuracy improvements by using DOPQ
and GDOPQ over OPQ on CNN-1M-4096D benchmark are
7% and 34% respectively when K = 100. These rates are
increased to 30% and 56% as we increase the number of
neighbors K to 1000.

In contrast to the case of deep features which are se-

mantic and well-clustered, the residual distance quantiza-
tion achieves significant accuracy improvement on VLAD
vectors which represent more visual information and are
thus unstructured. This can be validated by investigating
the results of GDOPQ at code lengths of 60, 64, and 68 bits.
According to parameters given in Table. 3, (M,N ′′K , N

G
D )

tuples for 60, 64, and 68 bits are (8, 128, 16), (8, 128, 256),
and (8, 256, 16), respectively. As shown in the Fig. 15 and
16 allocating 4 more bits for distance quantization (i.e. 60
→ 64 bits) achieves a significant improvement of the search
accuracy, however, using twice more centers by adding 8
bits (i.e. 60 → 68 bits) provides a marginal improvement.
Moreover, the mAP at 64 bits is even higher than one at 68



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Encoding SD AD w/o T AD w/ T

PQ 60.2 s 19.4 ms 391 ms 12.3 ms

RQ 372.8 s - 1307 ms 14.8 ms

DPQ 31.2 s 19.5 ms 405 ms 12.2 ms

GDPQ 31.6 s 19.6 ms 382 ms 12.4 ms

TABLE 4
This table shows computational times for encoding 1M (million) data,

1M symmetric distance estimations, 1M asymmetric distance
estimations with/without utilizing lookup tables. The timings are

measured on GIST-1M-960D at 64 bits encoding. Note that,
OPQ/DOPQ/GDOPQ are additionally required to perform orthogonal

projection in common. The projection of 1M data takes about 28 and 2
seconds by using sequential and parallel version of MKL library.

bits. An opposite trend of results can be observed on CNN-
1M-4096D benchmark. As a result, the residual distance
quantization and distance estimation utilizing those infor-
mation provide relatively higher accuracy improvement in
unstructured data compared to clustered data. Furthermore,
given a same underlying structure of the data but different
dimensionality (VLAD-1M-2048D and VLAD-1M-4096D),
having more distance quantizations significantly improves
the search accuracy in higher dimensional data where the
orthogonality assumption better holds.

We report experimental results of DPQ in Fig. 19. For
symmetric distance estimation, we compare DPQ against
PQ and some of well-known binary code embedding
techniques (i.e. hashing methods), Iterative Quantization
(ITQ) [17] and Spherical Hashing (SpH) [19] with its dis-
tance metric, SHD (Fig. 19(a)). Since the results of those
hashing techniques are lower than PQ, we do not show them
in other tests. In addition, we report the evaluation of DPQ
with asymmetric distance against PQ on three benchmarks
in Fig. 19(b). The improvement achieved by DPQ over
PQ clearly demonstrates the merits of encoding residual
distances and distance estimators utilizing them.

We also compare DPQ and GDPQ. The experimental
results are shown in Fig. 20. Overall, GDPQ consistently
shows higher accuracy compared to DPQ. For instance, the
mAP achieved by GDPQ at 40 bits is even higher than mAP
of DPQ with 64 bit codes in VLAD-1M-2048D benchmark.
Similarly GDPQ reaches the mAP of 0.2 only with 40 bits in
CNN-1M-4096D while DPQ requires 128 bits for the same
accuracy.

Finally, we report the computational times with GIST-
1M-960D dataset at 64 bits encoding. As reported in Table. 4,
DPQ and GDPQ provide about two times faster encoding
over PQ while those methods have insignificant speed
difference in distance estimations. Since DPQ and GDPQ
utilize smaller number of clusters than PQ at the same code
length, they can provide faster encoding performance. Note
that, the methods using subspaces and clusters optimized by
OPQ, OPQ/DOPQ/GDOPQ, require orthogonal projection
which takes about 28 and 2 seconds for 1 million data
by using sequential and parallel versions of MKL library,
respectively. RQ shows the slowest performance in both
encoding and distance estimation, since it works on the
original space but not the subspaces. RQ, specifically, has
O(MDNK) time complexity to encode a data point which
requires O(M) times longer computational time compared

0

0.1

0.2

0.3

0.4

16 32 64 128 256

10
00

-N
N

 m
A

P 
(S

D
)

Code Length (bits)

PQ
DPQ
SpH
ITQ

(a) GIST-1M-960D, SD

0

0.1

0.2

0.3

0.4

0.5

0.6

16 32 64 128 256

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

PQ (GIST)
DPQ (GIST)
PQ (CNN)
DPQ (CNN)
PQ (VLAD)
DPQ (VLAD)

(b) AD

Fig. 19. (a) shows experimental results on GIST-1M-960D. We compare
DPQ against PQ and two hashing methods SpH [19] with its distance
estimation SHD, and ITQ [17] with the Hamming distance. Since hashing
techniques assume that both query and data are encoded, we use
symmetric distance estimators for PQ and DPQ. (b) shows comparison
between PQ and DPQ on three benchmarks with asymmetric distance
estimators. Note that, the VLAD in this figure indicates VLAD-1M-2048D.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 20 24 32 36 40 60 64 68 72 11
6

12
0

12
8

13
2

13
6

22
8

23
2

25
6

26
0

26
4

10
00

-N
N

 m
A

P 
(A

D
)

Code Length (bits)

DPQ (GIST) DPQ (CNN) DPQ (VLAD)
GDPQ(GIST) GDPQ(CNN) GDPQ(VLAD)

Fig. 20. This figure shows comparison of DPQ and GDPQ on three dif-
ferent benchmarks when K = 1000 and asymmetric distance estimators
are used. Note that, the VLAD in this figure indicates VLAD-1M-2048D.

to PQ. As discussed in Sec. 4.1 and 5, DPQ and GDPQ have
even lower complexity than PQ.

7 CONCLUSION

We have presented a novel compact code representation
scheme DPQ that quantizes distances of points from their
corresponding cluster centers in each subspace. In addition,
we have proposed two different distance metrics tailored for
our encoding scheme: statistics and geometry based metrics.
We have chosen the geometry based metrics, since it consis-
tently show better accuracy over the statistics based one. We
have further extend DPQ to GDPQ which encodes global
residual distances in the original feature space instead of
subspaces. Since our encoding scheme is independent from
the subspace and codeword vector construction algorithms,
our method can be applied to any vector quantization
techniques and we believe that our method can provide
additional accuracy improvements.

We have applied our encoding schemes to PQ and OPQ,
and extensively evaluated against those baseline techniques
on popular high-dimensional image descriptors. We demon-
strated that our proposed method significantly and consis-
tently improves the baseline methods. These results confirm
the merits of our method encoding residual distances and
using them in distance estimations.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

ACKNOWLEDGEMENTS

The authors would like to think anonymous review-
ers for constructive comments. This work was sup-
ported in part by Basic Science Research Program (NRF-
2017R1D1A1B03036330), SW Starlab (IITP-2015-0-00199),
and Grand Information Technology Research Center sup-
port program (IITP-2018-2015-0-00742). This manuscript is
extended from the conference paper version [35]. Jae-Pil Heo
is the corresponding author of this paper.

REFERENCES

[1] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm
for finding best matches in logarithmic expected time,” ACM
Transactions on Mathematical Software, 1977.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial search-
ing,” ACM SIGMOD Record, 1984.

[3] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in International Conference on Very Large
Data Bases, 1999.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Kluwer Academic Publishers, 1991.

[5] H. Jégou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2011.

[6] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization
for approximate nearest neighbor search,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2013.

[7] M. Norouzi and D. J. Fleet, “Cartesian k-means,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2013.

[8] Y. Kalantidis and Y. Avrithis, “Locally optimized product quanti-
zation for approximate nearest neighbor search,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014.

[9] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing kd-
trees for scalable visual descriptor indexing,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2010.

[10] T. cker Chiueh, “Content-based image indexing,” in International
Conference on Very Large Data Bases, 1994.

[11] D. Nistér and H. Stewénius, “Scalable recognition with a vocab-
ulary tree,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2006.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors: to-
ward removing the curse of dimensionality,” in Symposium on
Computational Geometry, 1998.

[13] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in ACM Symposium on the Theory of Computing, 2002.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Symposium on Computational Geometry, 2004.

[15] O. Chum, J. Philbin, and Z. Zisserman, “Near duplicate image
detection: min-hash and tf-idf weighting,” in British Machine Vision
Conference, 2008.

[16] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Confer-
ence on Neural Information Processing Systems, 2008.

[17] Y. Gong and S. Lazebnik, “Iterative quantization: a procrustean ap-
proach to learning binary codes,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

[18] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer, “Compact
hashing with joint optimization of search accuracy and time,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[19] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing: Binary code embedding with hyperspheres,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2015.

[20] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions
on Information Theory, 1998.

[21] J. Brandt, “Transform coding for fast approximate nearest neigh-
bor search in high dimensions,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

[22] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor
search by residual vector quantization,” Sensors, 2010.

[23] L. Ai, J. Yu, Z. Wu, Y. He, and T. Guan, “Optimized residual vector
quantization for efficient approximate nearest neighbor search,”
Multimedia Systems, 2015.

[24] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large-scale image search,” in
European Conference on Computer Vision, 2008.

[25] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions
on Information Theory, 1982.

[26] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
analysis and implementation,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2002.

[27] P. H. Schönemann, “A generalized solution of the orthogonal
procrustes problem,” Psychometrika, 1966.

[28] A. Banerjee and J. Ghosh, “On scaling up balanced clustering
algorithms,” in SIAM International Conference on Data Mining, 2002.

[29] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

[30] J. Hopcroft, “High dimensional data in course notes of mathemat-
ical foundations for the information age,” 2010.

[31] T. Cai, J. Fan, and T. Jiang, “Distributions of angles in random
packing on spheres,” Journal of Machine Learning Research, 2013.

[32] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating
local descriptors into a compact image representation,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2010.

[33] D. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, 2004.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Conference on
Neural Information Processing Systems, 2012.

[35] J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance encoded product
quantization,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

Jae-Pil Heo is an assistant professor at SKKU
(Sungkyunkwan University), South Korea. Be-
fore joining SKKU, he was a researcher at ETRI
(Electronics and Telecommunications Research
Institute). He received his B.S., M.S., and Ph.D.
degrees in computer science from KAIST (Ko-
rea Advanced Institute of Science and Technol-
ogy) in 2008, 2010, and 2015, respectively. His
research interests include scalable algorithms
for high-dimensional data, computer vision, ma-
chine learning, and deep learning.

Zhe Lin received the BE degree in automatic
control from the University of Science and Tech-
nology of China in 2002, the MS degree in elec-
trical engineering from the Korea Advanced In-
stitute of Science and Technology in 2004, and
the PhD degree in electrical and computer engi-
neering from the University of Maryland, College
Park, in 2009. He has been working at Adobe
Systems Inc., San Jose, California since 2009,
and is currently a principal scientist at Adobe Re-
search. His research interests include computer

vision, image processing, machine learning, deep learning, artificial
intelligence. He is a member of the IEEE.

Sung-Eui Yoon is an associate professor at Ko-
rea Advanced Institute of Science and Technol-
ogy (KAIST). He received the B.S. and M.S. de-
grees in computer science from Seoul National
University in 1999 and 2001 respectively. He
received his Ph.D. degree in computer science
from the University of North Carolina at Chapel
Hill in 2005. His main research topic include im-
age search, rendering, and motion planning. He
has published more than 50 technical papers in
top journals and conference related to his topics.

He also gave numerous tutorials on rendering, collision detection, and
image search in premier conferences like ACM SIGGRAPH and CVPR.
He served as conf. co-chair and paper co-chair for ACM I3D 2012 and
2013 respectively. At 2008, we published a monograph on real-time
massive model rendering. Some of his papers received a test-of-time
award, and best paper awards.


	Introduction
	Related Work
	Background and Motivations
	Background
	Motivations

	Distance Encoded Product Quantization
	Our Encoding Scheme
	Distance Estimators
	Statistics based distance estimator
	Geometry based distance estimator


	Global Distance Encoded Product Quantization
	Evaluation
	Protocol
	Results

	Conclusion
	References
	Biographies
	Jae-Pil Heo
	Zhe Lin
	Sung-Eui Yoon


